Physics I

Pressure and Density

Pressure $=\frac{\text { Force }}{\text { Area }} \quad$ Definition of pressure. Measured in pascal (Pa) in SI units.

$$
\begin{array}{ll}
& 1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa} . \\
\Delta \mathrm{P}=\rho \mathrm{gh} & \text { Hydrostatic pressure at a depth } \mathrm{h} .
\end{array}
$$

Problem 1.- Estimate the pressure at the center of the Earth by integrating the hydrostatic equation ($\Delta P=\rho g h$) written in differential form:

$$
d P=\rho g d h
$$

So the integral will be:
$P=\int_{0}^{R} \rho g d h$

The limits of integration are from the center of the Earth $(h=0)$ to the surface $(h=R)$.
Where $R=6.37 \times 10^{6} \mathrm{~m}$ is the radius of the Earth.
Take the density as a constant: $\rho=5,500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$.
Take g to be this function: $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \frac{h}{R}$.
Solution: $P=\int_{0}^{R} \rho g d h=\int_{0}^{R} 5500 \times \frac{9.8}{R} h d h=5500 \times \frac{9.8 \times 6.37 \times 10^{6}}{2}=\mathbf{1 7 2} \mathbf{~ G P a}$
This rough calculation underestimates the real pressure because the density of the Earth is not constant, but it gives the right order of magnitude.

Problem 2.- How high would be the level in a barometer at normal atmospheric pressure if the fluid used were vodka martini (shaken not stirred) of density $910 \mathrm{~kg} / \mathrm{m}^{3}$? Would it be a practical instrument (why or why not)?

Solution: The pressure of the column of fluid inside the barometer has to match the atmospheric pressure, so:
$1 \mathrm{~atm}=\rho g h$, which means that: $h=\frac{1 \mathrm{~atm}}{\rho g}=\frac{1.013 \times 10^{5} \mathrm{~Pa}}{\left(910 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=\mathbf{1 1 . 4 m}$
This would not be a practical instrument, because it is too long and the vapor pressure of the liquid is too high.

Problem 3.-

a) Which has more volume: a kilogram of aluminum or a kilogram of gold?
b) Aerogel is a new material with very special properties. The silicon variety has a density of only $\rho=1.1 \mathrm{mg} / \mathrm{cm}^{3}$. Calculate the mass in grams of a 1.5 -liter sample.
$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$

Solution:

a) A kilogram of aluminum has more volume than a kilogram of gold because it has less density.
b) The mass of that sample is: $\mathrm{m}=\rho \mathrm{V}=\left(1.1 \mathrm{mg} / \mathrm{cm}^{3}\right)\left(1.5 \times 10^{3} \mathrm{~cm}^{3}\right)=\mathbf{1 . 6 5 g}$

Problem 4.- A precise barometer is used to measure the height of a building. It gives a change in pressure of 172 pascal between the top and the bottom of the building shown in the figure. Assume the density of air is constant and equal to $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ to find " h ".

Solution: The change in pressure is $\Delta P=\rho g h$, so $h=\frac{\Delta P}{\rho g}=\frac{172 \text { pascals }}{\left(1.25 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=\mathbf{1 4} \mathbf{m}$
Problem 5.- If the density of air were constant $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ how high would be the atmosphere?
Solution: If the density were constant we could write:
$1 \mathrm{~atm}=\rho g h \rightarrow h=\frac{1 \mathrm{~atm}}{\rho g}=\frac{1.013 \times 10^{5} \text { pascals }}{1.29 \mathrm{~kg} / \mathrm{m}^{3}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}=\mathbf{8 , 0 1 0} \mathbf{~ m}$
Problem 6.- A syrup tank springs a leak through a hole located 4.5 m under the surface of the fluid. The area of the hole is $0.0035 \mathrm{~m}^{2}$. If you plug the hole with a rubber stopper, how much force must the rubber apply to stop the leak? [$\rho_{\text {syrup }}=1,150 \mathrm{~kg} / \mathrm{m}^{3}$]

Solution: The change in pressure is

$$
\Delta P=\rho g h=\left(1,150 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(4.5 \mathrm{~m})=50,715 \text { pascal }
$$

To find the force we multiply by the area:

$$
F=(\Delta P) A=(50,715 \text { pascal })\left(0.0035 \mathrm{~m}^{2}\right)=177 \mathbf{N}
$$

Problem 7.- Estimate the atmospheric pressure at an altitude $\mathrm{H}=140$ meters over sea level, knowing that the pressure at sea level is 1.013×10^{5} pascal.
In your estimation assume the density of air to be constant $\rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}$.

Solution: For this estimation we use the hydrostatic equation:
$\mathrm{P}-\mathrm{P}_{2}=\rho \mathrm{gh} \rightarrow \mathrm{P}_{2}=\mathrm{P}_{1}-\rho \mathrm{gh}=1.013 \times 10^{5}-1.29 \times 9.8 \times 140=\mathbf{9 9 , 5 0 0}$ pascal

Problem 8.- Knowing that atmospheric pressure follows approximately the equation:
$\mathrm{P}=760 \mathrm{e}^{-\mathrm{h} / 8010}$
Where P is in torr and h is in meters. Calculate the height necessary to reach a pressure of 1 torr.

Solution: From the equation $P=760 e^{-h / 8010}$ we get:
$1=760 e^{-h / 8010} \rightarrow h=-8010 \ln \left(\frac{1}{760}\right)=\mathbf{5 3 , 0 0 0} \mathbf{~ m}$
Problem 9.- Calculate the pressure at the bottom of the Dead Sea, given that its depth is 330 m , the density of its salty water is $1230 \mathrm{~kg} / \mathrm{m}^{3}$ and the atmospheric pressure at the surface is $1.067 \times 10^{5} \mathrm{~Pa}$.

Solution: From the equation $\Delta P=\rho g h$ we get:

$$
\begin{aligned}
& \Delta P=P_{\text {bottom }}-P_{\text {surface }}=\rho g h \\
& P_{\text {bottom }}=P_{\text {surface }}+\rho g h=1.033 \times 10^{5} \mathrm{~Pa}+\left(1,230 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(330 \mathrm{~m})=\mathbf{4} \mathbf{0 8 1}, \mathbf{0 0 0} \mathbf{P a}
\end{aligned}
$$

Problem 9a.- Calculate the pressure at the bottom of Lake Erie, whose depth is 64 m . Assume the density of the water is $1,010 \mathrm{~kg} / \mathrm{m}^{3}$ and the atmospheric pressure at the surface is 1.033×10^{5} Pa.

Solution:
$\mathrm{P}=1.033 \times 10^{5} \mathrm{~Pa}+\rho g h=1.033 \times 10^{5} \mathrm{~Pa}+\left(1,010 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(64 \mathrm{~m})=737,000 \mathrm{~Pa}$
Problem 10.- Calculate the net force acting on a submarine window if the water depth is 200 m and the area of the window is $0.025 \mathrm{~m}^{2}$. Consider the pressure inside the submarine to be 1 atm . Take the density of seawater as $1,025 \mathrm{~kg} / \mathrm{m}^{3}$

Solution: The hydrostatic pressure at that depth is:
$\Delta \mathrm{P}=\rho \mathrm{gh}=1,025 \mathrm{~kg} / \mathrm{m}^{3}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(200 \mathrm{~m})=2,000,000 \mathrm{~Pa}$
The net force on the window will be:
$F=$ Area $\Delta \mathrm{P}=\left(0.025 m^{2}\right) 2,000,000 P a=\mathbf{5 0 , 0 0 0} \mathbf{N}$

Problem 11.- The gauge pressure in each of the four tires of an SUV is 28psi. Calculate the mass of the car if the "footprint" of each tire is $0.025 \mathrm{~m}^{2}$.

Solution: Let's convert the pressure in psi to pressure in pascal:
$p=28 p s i\left(\frac{6.9 \times 10^{3} P a}{1 p s i}\right)=193,200 \mathrm{~Pa}$
By definition Pressure $=\frac{\text { Force }}{\text { Area }}$

So the force is just (Pressure) \times (Area), but we need to multiply by 4 because there are four tires.
Force $=4 P A=4(193,200 P a)\left(0.025 m^{2}\right)=19,300 \mathrm{~N}$
To get the mass we divide the weight by $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
mass $=\frac{19,300 \mathrm{~N}}{9.8 m / s^{2}}=\mathbf{1 , 9 7 0} \mathbf{~ k g}$

Problem 12.- To answer the two questions that follow take the density of gold and alcohol to be:

$$
\rho_{\mathrm{Au}}=19,300 \mathrm{~kg} / \mathrm{m}^{3} \quad \rho_{\text {alcohol }}=800 \mathrm{~kg} / \mathrm{m}^{3}
$$

a) What is the volume of 1 kg of alcohol?
b) What is the mass of $0.15 \mathrm{~m}^{3}$ of gold?

Solution:

a) The volume of 1 kg of alcohol: Volume $=\frac{\text { mass }}{\text { density }}=\frac{1 \mathrm{~kg}}{800 \mathrm{~kg} / \mathrm{m}^{3}}=\mathbf{0 . 0 0 1 2 5} \mathrm{m}^{3}$
b) The mass of $0.15 \mathrm{~m}^{3}$ of gold:

Mass $=$ density \times volume $=19,300 \mathrm{~kg} / \mathrm{m}^{3} \times 0.15 \mathrm{~m}^{3}=\mathbf{2 , 9 0 0} \mathbf{~ k g}$
Problem 13.- What is the difference in blood pressure between the feet and brain of a standing 1.8 m -tall person? Approximate blood density to that of water.

Solution: $\Delta P=P_{\text {feet }}-P_{\text {brain }}=\rho g h=\frac{1,000 \mathrm{~kg}}{m^{3}} \frac{9.8 m}{s^{2}} 1.8 m=\mathbf{1 7 , 6 4 0} \mathbf{~ P a}$
This is 132 torr! So, it is no wonder that taking your blood pressure at the right height and position is important for accurate diagnoses.

