Physics I

Viscosity

Viscosity: $\frac{F}{A}=\eta \frac{v}{l}$ for two parallel surfaces

$$
Q=\frac{\pi R^{4}\left(P_{1}-P_{2}\right)}{8 \eta L} \quad \text { Poiseuille's equation }
$$

Problem 1.- A pipeline has a diameter of 25.4 cm and a difference in pressure of 30 psi . What new diameter would you need to increase the flow 3 times?

Problem 1a.- A pipeline has a diameter of 25.4 cm (10 inches), but it is going to be replaced to accommodate 5 times the flow of oil. If you keep the same pressure difference, how much should be the new diameter?

Problem 2.- Based on the Poiseuille's equation for laminar flow with viscosity η, what must be the pressure difference between the two ends of a 19 km pipeline, 12.3 cm in diameter if it is to transport oil at a rate of $\mathrm{Q}=950 \mathrm{~cm}^{3} / \mathrm{s}$?

The viscosity of oil is $\eta=0.20 \mathrm{~Pa} \cdot \mathrm{~s}$
Problem 3.- Based on the Poiseuille's equation for laminar flow
$Q=\frac{\pi R^{4}\left(P_{1}-P_{2}\right)}{8 \eta L}$
Suppose the radius of an artery is reduced to 0.8 R due to accumulation of plaque. By what factor do you need to increase the pressure difference $\left(P_{1}-P_{2}\right)$ to keep the same flow?

