Physics I

Viscosity

Viscosity: $\frac{F}{A}=\eta \frac{\nu}{l}$ for two parallel surfaces

$$
Q=\frac{\pi R^{4}\left(P_{1}-P_{2}\right)}{8 \eta L} \quad \text { Poiseuille's equation }
$$

Problem 1.- A pipeline has a diameter of 25.4 cm and a difference in pressure of 30 psi . What new diameter would you need to increase the flow 3 times?

Solution: since the flow is proportional to R^{4} we need to increase the diameter by a factor of $\sqrt[4]{3}=1.32$, so the new diameter is $25.4 \times 1.32=33.4 \mathrm{~cm}$

Problem 1a.- A pipeline has a diameter of 25.4 cm (10 inches), but it is going to be replaced to accommodate 5 times the flow of oil. If you keep the same pressure difference, how much should be the new diameter?

Solution: With the same logic as the previous problem, if the flow is 5 times as large the diameter will need to be:
$D=25.4 \mathrm{~cm} \times \sqrt[4]{5}=\mathbf{3 8} \mathbf{~ c m}$
Problem 2.- Based on the Poiseuille's equation for laminar flow with viscosity η, what must be the pressure difference between the two ends of a 19 km pipeline, 12.3 cm in diameter if it is to transport oil at a rate of $\mathrm{Q}=950 \mathrm{~cm}^{3} / \mathrm{s}$?

The viscosity of oil is $\eta=0.20 \mathrm{~Pa} \cdot \mathrm{~s}$
Solution: Poiseuille's equation for laminar flow:
$\mathrm{Q}=\frac{\text { volume }}{\text { time }}=\frac{\pi \mathrm{PR}^{4}}{8 \mathrm{~L} \eta}$
So, solving for the pressure: $\mathrm{P}=\frac{8 \mathrm{~L} \eta}{\pi \mathrm{R}^{4}} \mathrm{Q}$
Where: $\mathrm{L}=19 \mathrm{~km}=19,000 \mathrm{~m}$
$\mathrm{R}=12.3 \mathrm{~cm} / 2=0.0615 \mathrm{~m}$
$\mathrm{Q}=\frac{950 \mathrm{~cm}^{3}}{\mathrm{~s}}=950 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{s}$
Then: $\mathrm{P}=\frac{8 \mathrm{~L} \eta}{\pi \mathrm{R}^{4}} \mathrm{Q}=\frac{8 \times 19000 \times 0.2}{\pi \times 0.0615^{4}} \times 950 \times 10^{-6}=643,000 \mathrm{~Pa}$

Problem 3.- Based on the Poiseuille's equation for laminar flow
$Q=\frac{\pi R^{4}\left(P_{1}-P_{2}\right)}{8 \eta L}$
Suppose the radius of an artery is reduced to 0.8 R due to accumulation of plaque. By what factor do you need to increase the pressure difference $\left(P_{1}-P_{2}\right)$ to keep the same flow?

Solution: Since the radius is only 0.8 times the old radius the flow would be $0.8^{4}=0.4096$ of the old flow. To compensate for this, we need to increase the pressure difference by a factor of 1/0.4096=2.44

