Physics I

Doppler Effect

For a detector moving directly towards a stationary emitter use the + sign (- if moving away).

$$
f_{\text {dececected }}=f_{\text {cminter }}\left(1 \pm \frac{v_{\text {detector }}}{v_{\text {sound }}}\right)
$$

For an emitter moving directly towards a stationary detector use the - sign (+ if moving away).

$$
f_{\text {detected }}=\frac{f_{\text {emiter }}}{\left(1 \mp \frac{v_{\text {emitter }}}{v_{\text {sound }}}\right)}
$$

For electromagnetic waves, if the detector is directly approaching the emitter (or vice versa).

$$
f_{\text {detected }}=f_{\text {emitter }} \sqrt{\frac{1+\beta}{1-\beta}} \quad \text { where } \quad \beta=\frac{v}{c}=\frac{v}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}
$$

If the detector is moving directly away from the emitter, you change the signs.
Problem 1.- A bat (flying mammal, not baseball) emits an ultrasonic wave of frequency 48.5 kHz while moving towards an ultrasonic microphone at $7 \mathrm{~m} / \mathrm{s}$. Calculate the frequency measured by the instrument.

Solution: Using the Doppler Effect equation for a stationary detector.
$\mathrm{f}_{\text {detected }}=\frac{\mathrm{f}_{\text {emitter }}}{\left(1-\frac{\mathrm{v}}{\mathrm{v}_{\text {sound }}}\right)}=\frac{48,500 \mathrm{~Hz}}{\left(1-\frac{7 \mathrm{~m} / \mathrm{s}}{343 \mathrm{~m} / \mathrm{s}}\right)}=49,500 \mathrm{~Hz}$
Problem 2.- A source of radio waves emits radiation of wavelength $\lambda=0.21061 \mathrm{~m}$ Find the wavelength observed on Earth if the source approaches us at $\mathrm{v}=335 \times 10^{3} \mathrm{~m} / \mathrm{s}$.

Solution: The Doppler Effect indicates that the frequency will be higher, so the wavelength will be shorter, given by the equation:

$$
\lambda_{\text {detected }}=\lambda_{\text {emitter }} \sqrt{\frac{1-\beta}{1+\beta}}
$$

With the values of the problem we get:

$$
\lambda_{\text {detected }}=0.2106 \sqrt{\frac{1-335 \times 10^{3} / 3 \times 10^{8}}{1+335 \times 10^{3} / 3 \times 10^{8}}}=\mathbf{0 . 2 1 0 3 6} \mathbf{~ m}
$$

Problem 3.- Two speakers separated by 100 m emit sound at a frequency of $1,500 \mathrm{~Hz}$ simultaneously. You are at the middle point between the two speakers and run towards one of them (and away from the other) at a speed of $5 \mathrm{~m} / \mathrm{s}$. Calculate the frequency of the resulting beats. Take the speed of sound as $343 \mathrm{~m} / \mathrm{s}$.

Solution: The detector (you) will hear a higher pitch coming from the source that you are approaching.
$\mathrm{f}_{\text {detected }}=\mathrm{f}_{\text {emitter }}\left(1+\frac{\mathrm{v}_{\text {detector }}}{\mathrm{V}_{\text {sound }}}\right)=1,500\left(1+\frac{5}{343}\right)=1,522 \mathrm{~Hz}$

However, you will hear a lower pitch coming from the other source
$\mathrm{f}_{\text {detected }}=\mathrm{f}_{\text {emitter }}\left(1-\frac{\mathrm{v}_{\text {detector }}}{\mathrm{v}_{\text {sound }}}\right)=1500\left(1-\frac{5}{343}\right)=1,478 \mathrm{~Hz}$
The beats will have a frequency of $1,522-1,478=\mathbf{4 4} \mathbf{~ H z}$
Problem 4.- In studying a star you notice that the $\mathrm{H} \alpha$ spectral line (whose normal wavelength in the lab is 659.8 nm), is shifted to 658.4 nm .
(A) Is it approaching us or moving away from us?
(B) What is the speed of the star?

Solution: (A) since the detected wavelength is shorter, this is a case of blue-shift, where the star is approaching us.
(B) We use the Doppler Effect equation to solve for the speed:

$$
\lambda_{\text {detected }}=\lambda_{\text {emiter }} \sqrt{\frac{1-\beta}{1+\beta}} \rightarrow \beta=\frac{\lambda_{\text {exiter }}^{2}-\lambda_{\text {decected }}^{2}}{\lambda_{\text {emiterer }}^{2}+\lambda_{\text {emiter }}^{2}} \rightarrow v=\frac{\lambda_{\text {eniter }}^{2}-\lambda_{\text {deteced }}^{2}}{\lambda_{\text {eniter }}^{2}+\lambda_{\text {eniter }}^{2}} c
$$

With the values given:

$$
v=\left(\frac{659.8^{2}-658.4^{2}}{659.8^{2}+658.4^{2}}\right) 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=\mathbf{6 3 7} \mathbf{~ k m} / \mathrm{s}
$$

Alternatively, since v / c is so small, it is possible to approximate $\sqrt{\frac{1-v / c}{1+v / c}} \approx 1-v / c$, so

$$
\frac{\lambda_{\text {detected }}}{\lambda_{\text {emitter }}}=1-v / c \rightarrow v=\left(1-\frac{\lambda_{\text {detected }}}{\lambda_{\text {emitter }}}\right) c=\left(1-\frac{658.4}{659.8}\right) 3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}=637 \mathrm{~km} / \mathrm{s}
$$

Problem 5.- At what frequency do you hear a police car siren that emits a frequency of 500 Hz and is approaching you at $22 \mathrm{~m} / \mathrm{s}$?

Solution: Since the siren is the emitter and it is moving, we should use the equation:
$f_{\text {detected }}=f_{\text {emitter }} \frac{1}{1-v / v_{\text {sound }}}$
We use the negative sign because the source is approaching the detector (us):
$\mathrm{f}_{\text {detected }}=500 \mathrm{~Hz} \frac{1}{1-22 / 343}=\mathbf{5 3 4} \mathbf{~ H z}$
Problem 6.- A bat at rest sends a sound wave with a frequency of 45.0 kHz and receives it returning from an object moving directly away from it with a frequency of 42.4 kHz . Find the speed of the object.
Speed of sound $=343 \mathrm{~m} / \mathrm{s}$
Solution: This is another case of the Doppler Effect: a source that is not moving and an object that reflects the waves back to the source, where a detector measures the frequency. For an object moving directly away from the source the frequency is given by:
$f_{\text {detected }}=f_{\text {emitter }} \frac{1-\frac{v_{\text {object }}}{v_{\text {sound }}}}{1+\frac{v_{\text {object }}}{v_{\text {sound }}}}$
We know the two frequencies and the speed of sound. Some algebraic manipulation gives us:
$v_{\text {object }}=v_{\text {sound }} \frac{1-\frac{f_{\text {detected }}}{f_{\text {emiter }}}}{1+\frac{f_{\text {detected }}}{f_{\text {emitter }}}} \rightarrow v_{\text {object }}=343 \frac{1-\frac{42.4}{45.0}}{1+\frac{42.4}{45.0}}=\mathbf{1 0 . 2} \mathbf{~ m} / \mathbf{s}$

