Physics I

Sound Generation

Standing frequency in a pipe open on both sides: $f=n \frac{v_{\text {sound }}}{2 L}, n=1,2,3 \ldots$
Standing frequency in a pipe open on one side: $f=n \frac{v_{\text {sound }}}{4 L}, n=1,3,5 \ldots$
Problem 1.- Consider the human ear canal as a 2.4 cm pipe open at one end and closed at the other. At what frequencies are the fundamental and the first overtone resonances?

Problem 2.- Consider a chimney to be an open tube (both ends open). If the fundamental frequency heard is 25 Hz , how long is the chimney?

Problem 3.- At $20^{\circ} \mathrm{C}$, when the speed of sound is $343 \mathrm{~m} / \mathrm{s}$, a pipe open at both ends resonates at a frequency of 440 hertz. At what frequency does the same pipe resonate on a particularly cold day when the speed of sound is $322.8 \mathrm{~m} / \mathrm{s}$?

Problem 4.- Two horns produce sounds with wavelength 6.5 m and 7.5 m respectively. What beat frequency is heard when both horns emit sound simultaneously?
Take the speed of sound as $343 \mathrm{~m} / \mathrm{s}$

