Physics I

Sound Generation

Standing frequency in a pipe open on both sides: $f = n \frac{v_{sound}}{2L}$, n = 1,2,3...

Standing frequency in a pipe open on one side: $f = n \frac{v_{sound}}{4L}$, n = 1,3,5...

Problem 1.- Consider the human ear canal as a 2.4 cm pipe open at one end and closed at the other. At what frequencies are the fundamental and the first overtone resonances?

Solution: For a pipe open at one end the first resonance occurs when the length of the pipe is equal to one quarter of a wavelength:

This is so because the pressure at the open end must be equal to the outside pressure if there is going to be a standing wave. The displacement of air at the closed end must be zero because the particles have nowhere to go, so the pressure is a maximum or minimum at the closed end.

Consequently, the first resonance corresponds to

$$\lambda/4 = 2.4 \text{ cm} \rightarrow \lambda = 9.6 \text{ cm} = 0.096 \text{ m} \rightarrow \text{f} = \frac{\text{v}_{\text{sound}}}{\lambda} = \frac{343 \text{ m/s}}{0.096 \text{ m}} = 3,570 \text{ Hz}$$

The first overtone will happen when the length of the pipe is equal to $\frac{3}{4}$ of a wavelength as shown below:

Problem 2.- Consider a chimney to be an open tube (both ends open). If the fundamental frequency heard is 25Hz, how long is the chimney?

Solution: The wavelength is $\lambda = \frac{v}{f} = \frac{343}{25} = 13.72m$

The length of the chimney is then $\lambda/2 = 6.86$ m

Problem 3.- At 20°C, when the speed of sound is 343 m/s, a pipe open at both ends resonates at a frequency of 440 hertz. At what frequency does the same pipe resonate on a particularly cold day when the speed of sound is 322.8 m/s?

Solution:

In the first condition $\lambda = \frac{343}{440} = 0.78m$ In the second condition $f = \frac{322.8}{0.78} = 414$ Hz

Problem 4.- Two horns produce sounds with wavelength 6.5 m and 7.5 m respectively. What beat frequency is heard when both horns emit sound simultaneously? Take the speed of sound as 343 m/s

Solution: The beats will happen at the difference in frequency

$$f_{beats} = \frac{343}{6.5} - \frac{343}{7.5} = 7.0 \text{ Hz}$$