Physics I

Sound Generation

Standing frequency in a pipe open on both sides: $f=n \frac{v_{\text {sound }}}{2 L}, n=1,2,3 \ldots$
Standing frequency in a pipe open on one side: $f=n \frac{v_{\text {sound }}}{4 L}, n=1,3,5 \ldots$

Problem 1.- Consider the human ear canal as a 2.4 cm pipe open at one end and closed at the other. At what frequencies are the fundamental and the first overtone resonances?

Solution: For a pipe open at one end the first resonance occurs when the length of the pipe is equal to one quarter of a wavelength:

This is so because the pressure at the open end must be equal to the outside pressure if there is going to be a standing wave. The displacement of air at the closed end must be zero because the particles have nowhere to go, so the pressure is a maximum or minimum at the closed end.

Consequently, the first resonance corresponds to
$\lambda / 4=2.4 \mathrm{~cm} \rightarrow \lambda=9.6 \mathrm{~cm}=0.096 \mathrm{~m} \rightarrow \mathrm{f}=\frac{\mathrm{v}_{\text {sound }}}{\lambda}=\frac{343 \mathrm{~m} / \mathrm{s}}{0.096 \mathrm{~m}}=\mathbf{3 , 5 7 0} \mathbf{~ H z}$
The first overtone will happen when the length of the pipe is equal to $3 / 4$ of a wavelength as shown below:

So, in this case:
$3 / 4 \lambda=2.4 \mathrm{~cm} \rightarrow \lambda=3.2 \mathrm{~cm}=0.032 \mathrm{~m} \rightarrow \mathrm{f}=\frac{\mathrm{v}_{\text {sound }}}{\lambda}=\frac{343 \mathrm{~m} / \mathrm{s}}{0.032 \mathrm{~m}}=\mathbf{1 0 , 7 2 0} \mathbf{~ H z}$

Problem 2.- Consider a chimney to be an open tube (both ends open). If the fundamental frequency heard is 25 Hz , how long is the chimney?

Solution: The wavelength is $\lambda=\frac{v}{f}=\frac{343}{25}=13.72 \mathrm{~m}$
The length of the chimney is then $\lambda / 2=\mathbf{6 . 8 6 m}$
Problem 3.- At $20^{\circ} \mathrm{C}$, when the speed of sound is $343 \mathrm{~m} / \mathrm{s}$, a pipe open at both ends resonates at a frequency of 440 hertz. At what frequency does the same pipe resonate on a particularly cold day when the speed of sound is $322.8 \mathrm{~m} / \mathrm{s}$?

Solution:

In the first condition $\lambda=\frac{343}{440}=0.78 \mathrm{~m}$
In the second condition $f=\frac{322.8}{0.78}=\mathbf{4 1 4 ~ H z}$
Problem 4.- Two horns produce sounds with wavelength 6.5 m and 7.5 m respectively. What beat frequency is heard when both horns emit sound simultaneously?
Take the speed of sound as $343 \mathrm{~m} / \mathrm{s}$
Solution: The beats will happen at the difference in frequency

$$
f_{\text {beats }}=\frac{343}{6.5}-\frac{343}{7.5}=7.0 \mathrm{~Hz}
$$

