Physics I

Sound Intensity

Sound intensity $\mathrm{I}=\frac{\text { power }}{\text { area }}$ or in decibels $\beta=10 \log \left(\frac{\mathrm{I}}{1 \times 10^{-12} \mathrm{Wm}^{-2}}\right)$
Problem 1.- You are 2.5 m away from the speakers of a TV set (a vintage one in the figure) and you hear the sound at a level of 90 dB . How far away do you need to be if you want the intensity to be 84 dB ?
You can assume the intensity is distributed over an area $2 \pi R^{2}$.

Problem 1a.- You are 6 meters away from an un-muffled diesel engine and the noise level is 126 dB. How far do you need to be for the noise level to be 80 dB ?
Take the area to be $2 \pi R^{2}$
Problem 1b.- At a concert you are sitting 120 m from the speakers and feel the sound level at an intensity of 115 dB . How much is the intensity for a person 60 m away from the speakers? Assume that the power spreads uniformly.

Problem 2.- The label on a speaker box claims that it delivers a power of 350 W . If this power were equally distributed in all directions, what would be the intensity of the sound in decibels at 25 m from the speaker?

Problem 2a.- A barking dog delivers $3.5 \times 10^{-3} \mathrm{~W}$ of power, which you can assume to be uniformly distributed in all directions. What is the intensity in decibels at 5.8 m from the dog?

Problem 3.- Calculate the power delivered by the speakers in a concert if the intensity reached $\beta=115 \mathrm{~dB}$ at 20 m . In your estimation, assume an area of distribution of half a sphere $\left(2 \pi \mathrm{R}^{2}\right)$.

Problem 4.- A mosquito located two meters away produces a sound intensity of 85 dB . How much would the intensity be if there were 200 mosquitoes at the same distance?
You can assume that the sound is equally distributed in all directions.
Problem 4a.- Two jet engines together produce a sound intensity of 116 dB at a certain distance. How much would the intensity be if you had just one jet engine at the same distance?

Problem 4b.- A jet engine produces a sound intensity of 115 dB at a certain distance. How much would the intensity be if you had four jet engines at the same distance?

Problem 5.- An explosion on a paved street is detected by a ground detector and a microphone with a delay of 1.43 s . Calculate the distance from the explosion to the instruments. [Speed of sound in air $=343 \mathrm{~m} / \mathrm{s}$ Speed of sound in concrete $=3,000 \mathrm{~m} / \mathrm{s}$]

Problem 6.- On the morning of August 27, 1883, the Krakatoa volcano's vents sunk below sea level, letting seawater flood into it and causing a massive explosion.
We will make a very rough estimate of the sound intensity in Los Angeles (distance to Krakatoa, $\mathrm{R}=1.2 \times 10^{7} \mathrm{~m}$). Assume the power of the sound wave was $3.2 \times 10^{13} \mathrm{~W}$ and consider that the wave was distributed over an area $4 \pi R^{2}$, which is an exaggeration, but partially compensates for not considering attenuation.

