Physics I

Sound Intensity

Sound intensity $\mathrm{I}=\frac{\text { power }}{\text { area }}$ or in decibels $\beta=10 \log \left(\frac{\mathrm{I}}{1 \times 10^{-12} \mathrm{Wm}^{-2}}\right)$
Problem 1.- You are 2.5 m away from the speakers of a TV set (a vintage one in the figure) and you hear the sound at a level of 90 dB . How far away do you need to be if you want the intensity to be 84 dB ?
You can assume the intensity is distributed over an area $2 \pi R^{2}$.

Solution: To reduce the intensity 6 dB we need to reduce I by a factor of 4 . Doubling the distance will increase the area by a factor of 4 accomplishing this. So, the answer is $x=5 \mathrm{~m}$

Problem 1a.- You are 6 meters away from an un-muffled diesel engine and the noise level is 126 dB. How far do you need to be for the noise level to be 80 dB ?
Take the area to be $2 \pi R^{2}$
Solution: The difference in intensity is 46 dB , which is equivalent to a factor of 40,000 . To reduce the intensity that much you must be 200 times further away or $\mathbf{1 2 0 0} \mathbf{m}$ away.

Problem 1b.- At a concert you are sitting 120 m from the speakers and feel the sound level at an intensity of 115 dB . How much is the intensity for a person 60 m away from the speakers? Assume that the power spreads uniformly.

Solution: The person that is at 60 m from the source will perceive a higher intensity. Notice that the area will be only $1 / 4$ of the one at 120 m due to having half the radius. Hence, the intensity will be 4 times louder or 6 dB higher.

Answer: $\mathbf{1 2 1}$ dB
Problem 2.- The label on a speaker box claims that it delivers a power of 350 W . If this power were equally distributed in all directions, what would be the intensity of the sound in decibels at 25 m from the speaker?

Solution: The intensity in $\mathrm{W} / \mathrm{m}^{2}$ is

$$
\mathrm{I}=\frac{\text { Power }}{\text { Area }}=\frac{350 \mathrm{~W}}{4 \pi \mathrm{R}^{2}}=\frac{350 \mathrm{~W}}{4(3.1416)(25 \mathrm{~m})^{2}}=0.0446 \mathrm{~W} / \mathrm{m}^{2}
$$

And converting this intensity to decibels:

$$
\beta=10 \times \log _{10}\left(\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{o}}}\right)=10 \times \log _{10}\left(\frac{0.0446 \mathrm{~W} / \mathrm{m}^{2}}{10^{-12} \mathrm{~W} / \mathrm{m}^{2}}\right)=\mathbf{1 0 6 . 5} \mathbf{~ d B}
$$

Problem 2a.- A barking dog delivers $3.5 \times 10^{-3} \mathrm{~W}$ of power, which you can assume to be uniformly distributed in all directions. What is the intensity in decibels at 5.8 m from the dog ?

Solution: First the intensity in watts per square meter
$I=\frac{\text { Power }}{\text { Area }}=\frac{3.5 \times 10^{-3}}{4 \pi \times 5.8^{2}}=8.27 \times 10^{-6}$
And now in decibels $\beta=10 \log \left(\frac{8.27 \times 10^{-6}}{1 \times 10^{-12}}\right)=\mathbf{6 9 . 2} \mathbf{~ d B}$
Problem 3.- Calculate the power delivered by the speakers in a concert if the intensity reached $\beta=115 \mathrm{~dB}$ at 20 m . In your estimation, assume an area of distribution of half a sphere $\left(2 \pi R^{2}\right)$.

Solution: We convert the intensity in decibels to raw intensity using the definition:

$$
115=10 \log \left(\frac{I}{10^{-12}}\right) \rightarrow \log \left(\frac{I}{10^{-12}}\right)=11.5 \rightarrow \frac{I}{10^{-12}}=10^{11.5} \rightarrow I=10^{-0.5}=0.316 \mathrm{~W} / \mathrm{m}^{2}
$$

And to get the power we multiply by the area:

$$
\text { Power }=I A=0.316 \times\left(2 \pi R^{2}\right)=0.316 \times\left(2 \pi \times 20^{2}\right)=794 \text { watts }
$$

Problem 4.- A mosquito located two meters away produces a sound intensity of 85 dB . How much would the intensity be if there were 200 mosquitoes at the same distance?
You can assume that the sound is equally distributed in all directions.
Solution: Since $200=2 \times 10 \times 10$ we need to add $3 \mathrm{~dB}+10 \mathrm{~dB}+10 \mathrm{~dB}$ to account for the three factors, so the sound will have an intensity of $\mathbf{1 0 8} \mathbf{d B}$

Problem 4a.- Two jet engines together produce a sound intensity of 116 dB at a certain distance. How much would the intensity be if you had just one jet engine at the same distance?

Solution: A drop in intensity by half is the same as -3 dB , so answer: $\mathbf{1 1 3 d B}$
Problem 4b.- A jet engine produces a sound intensity of 115 dB at a certain distance. How much would the intensity be if you had four jet engines at the same distance?

Solution: The intensity of one jet is: $I_{1}=10^{\beta / 10} I_{o}$ and the intensity of four of them will be: $\mathrm{I}_{4}=4 \times 10^{\beta / 10} \mathrm{I}_{\mathrm{o}}$,
So the new intensity in dB is $\beta_{4}=10 \log \left(4 \times 10^{\beta / 10}\right)=\beta+10 \log (4)=\mathbf{1 1 1} \mathbf{d B}$

Problem 5.- An explosion on a paved street is detected by a ground detector and a microphone with a delay of 1.43 s . Calculate the distance from the explosion to the instruments. [Speed of sound in air $=343 \mathrm{~m} / \mathrm{s} \quad$ Speed of sound in concrete $=3,000 \mathrm{~m} / \mathrm{s}$]

Solution: The delay between the two instruments is the difference in time between the two signals, which gives us the equation:
$\frac{L}{343 m / s}-\frac{L}{3000 m / s}=1.73 s \rightarrow L=\frac{1.73 s}{\frac{1}{343 m / s}-\frac{1}{3000 m / s}}=670 \mathrm{~m}$
Problem 6.- On the morning of August 27, 1883, the Krakatoa volcano's vents sunk below sea level, letting seawater flood into it and causing a massive explosion.
We will make a very rough estimate of the sound intensity in Los Angeles (distance to Krakatoa, $\mathrm{R}=1.2 \times 10^{7} \mathrm{~m}$). Assume the power of the sound wave was $3.2 \times 10^{13} \mathrm{~W}$ and consider that the wave was distributed over an area $4 \pi R^{2}$, which is an exaggeration, but partially compensates for not considering attenuation.

Solution: Our estimation of the intensity gives:
$I=\frac{\text { Power }}{\text { Area }}=\frac{\text { Power }}{4 \pi R^{2}}$
In decibels:
$\beta=10 \times \log \left(\frac{I}{I_{o}}\right)=10 \times \log \left(\frac{\text { Power }}{I_{o} 4 \pi R^{2}}\right)$

With the values of the problem:
$\beta=10 \times \log \left(\frac{3.2 \times 10^{13} \mathrm{~W}}{1 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2} 4(3.1416)\left(1.2 \times 10^{7} \mathrm{~m}\right)^{2}}\right)=\mathbf{1 0 2 . 5} \mathbf{d B}$

