Physics I

Dot and Cross Products

Problem 1.- What is the angle between the vectors $(-1,1)$ and $(3,4)$?

Solution:

The angle is: $\cos ^{-1}\left(\frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}\right)=\cos ^{-1}\left(\frac{-3+4}{|5||\sqrt{2}|}\right)=\cos ^{-1}\left(\frac{1}{5 \sqrt{2}}\right)=\mathbf{8 2}^{\circ}$
Problem 2.- Find the angle between the vectors:
$\mathrm{A}=(1,2,3)$
$\mathrm{B}=(-1,2,-3)$
Solution: Notice that:
$A \cdot B=-1+4-9=-6$ and:
$|A|=\sqrt{1+4+9}=\sqrt{14}$
$|B|=\sqrt{1+4+9}=\sqrt{14}$
So: $\cos \theta=\frac{A \cdot B}{|A||B|}=\frac{-6}{14} \rightarrow \theta=\cos ^{-1}\left(\frac{-6}{14}\right)=115^{\circ}$
Problem 3.- Vector $\mathrm{A}=(2,3,1)$ is perpendicular to the vector $\mathrm{B}=(x,-2,1)$.
Calculate the value of x.
Solution: The dot product must be zero if the vectors are perpendicular so,

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=|\vec{A}||\vec{B}| \cos \angle_{A}^{B}=0 \rightarrow 2 x-6+1=0 \rightarrow x=\mathbf{2 . 5}
$$

