
Physics I 

Heat capacity of an ideal gas 
 

 We learn that a mono-atomic ideal gas has kinetic energy per atom equal to Tk
2

3
B , so the total 

for N atoms is TNk
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3
B , this means that the heat capacity is given by: 
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Where AN is Avogadro’s number, n is the number of moles and R is the ideal gas constant 

(8.314 J mol-1 K-1). 

 

This means that the heat capacity of a mono-atomic ideal gas is Cv=3/2R per mole. 

 

 

What happens if the gas is diatomic?  
 

Gases like N2 and O2 are composed of diatomic molecules that can store energy in their 

rotational motion. At high temperature, the contribution to the heat capacity is equal to BNk  or 

nR. So, an ideal diatomic gas will have a heat capacity equal to BNk
2

5
 or nR

2

5
.  

So, an ideal diatomic gas has a heat capacity of Cv=5/2R per mole 

 

Since air is a mixture of mainly diatomic gases, this heat capacity approximates its behavior best. 

 

Diatomic gases can also store energy in their vibrational motion, but for that degree of freedom 

to contribute significantly, the temperature must be very high. 

 

Heat capacity at constant pressure  
 

The heat capacities defined above are at constant volume, in which case all the heat goes to 

change the internal energy “U”. This is because of the first law of thermodynamics: 

 

ΔUWQ +=  

 

At constant volume W=0 so ΔUQ = . 

You can use these heat capacities to calculate internal energy. 

 

If you add heat to an ideal gas at constant pressure, part of the heat goes to increase the kinetic 

energy of the molecules or atoms, and some produces work in the expansion. Because of this, the 

heat capacity of an ideal gas at constant pressure is higher than at constant volume. We use the 

symbol Cp for the former.  

  



Consider n moles of an ideal gas at a constant pressure p1, initial volume V1 and initial 

temperature T1. If you increase the temperature to T2=T1+ T∆ the volume will increase to: 
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Again, using the first law of thermodynamics: 

 

ΔTCTnRΔUTnRΔUWQ v+∆=+∆=+=  

 

Dividing by T∆ we get:   vCnR
ΔT

Q
+=   

The left-hand side of the equation is the heat capacity at constant pressure so: 

vp CnRC +=  

 

So, the heat capacity at constant pressure is nR higher than at constant volume. 

 

Summary: The heat capacities per mole of ideal gases are: 
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Definition of gamma: The ratio of Cp to Cv is always greater than 1 and it is a very useful 

quantity. It is called gamma. 
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Notice that for mono-atomic gases 1.675/3γ == and for diatomic gases 1.47/5γ ==  

 

Air: A good approximation for dilute air at moderately high temperature is to consider Cv=5/2R 

per mole, Cp=7/2R per mole and a molecular weight of 29.0 amu. 


