Physics II

RC Circuits

These electric circuits contain a combination of resistors and capacitors.
Consider the following circuit.

Let's say the capacitor initially has a charge q and hence an initial voltage $V_{o}=\frac{q}{C}$, but at time $\mathrm{t}=0$ the switch S is closed.
Initially, the current will be $i=\frac{V_{o}}{R}$, but this current will discharge the capacitor, which in turn will reduce the voltage reducing the current as well.

While the capacitor is discharging, the circuit equation will be:
$\frac{d V}{d t}=-\frac{V}{R C}$
The minus sign is because the current is due to the capacitor discharge $i=-d q / d t$ and the charge in the capacitor is $q=C V$.

This is an ordinary first order differential equation, whose solution is an exponential function:
$V=V_{o} \exp (-t / \tau)$

Where $\tau=R C$ is the time constant of the circuit. Notice that 1 farad times 1 ohm is 1 second.
Similarly, the current will decrease exponentially:
$i=\frac{V_{o}}{R} \exp (-t / \tau)$

If the initial conditions or final conditions are different, the solution is similar with the same time constant.
For example, let's examine this circuit:

In this case the capacitor is initially discharged and at $\mathrm{t}=0$ we close the switch S . The initial current will be $i=\frac{V_{o}}{R}$, but as the capacitor charges, the voltage on the resistor will drop as well as the current.

This time the solution is:
$V=V_{o}[1-\exp (t / \tau)]$
Here the voltage in the capacitor will get closer and closer to the source voltage exponentially.

