Physics II

Electric Current

Electric current: $I=\frac{\text { charge }}{\text { time }}$
Problem 1.- In electrolytic refining, current passes through a solution to accumulate a pure metal on one of the electrodes. Calculate how much time you would need to accumulate 1 mole of Zn (65.4 grams) with a current of 10.5 A .
Take into account that Zn ions have a charge of +2 e or $+3.2 \times 10^{-19} \mathrm{C}$

Solution: The definition of electric current is Q / t so, knowing the charge and the current allows us to calculate the time:
$\mathrm{Q}=\left(6.022 \times 10^{23}\right.$ ions $) \times\left(3.2 \times 10^{-19} \mathrm{C} /\right.$ ion $)=192,700 \mathrm{C}$
So, the time is: time $=\frac{Q}{I}=\frac{192,700 C}{10.5 A}=\mathbf{1 8 , 4 0 0} \mathrm{s}$
Problem 2.- Some people think that water, separated by electrolysis into H_{2} and O_{2}, could be a source of fuel and breathing oxygen for astronauts. Calculate how much current you need to produce 1 mol of oxygen $\left(\mathrm{O}_{2}\right)$ in one hour.
Charge of one O^{--}ion $=-3.2 \times 10^{-19} \mathrm{C}, 1$ mole of $\mathrm{O}_{2}=12.05 \times 10^{23}$ atoms
Solution: The charge will be: $\mathrm{Q}=\left(12.05 \times 10^{23}\right) \times\left(3.2 \times 10^{-19}\right)=0.385 \times 10^{6}$ coulomb The current will be:
$I=\frac{Q}{t}=\frac{0.385 \times 10^{6}}{3600}=107 \mathrm{~A}$

Problem 3.- A headlamp in a car is rated 55 W at 12 V , which means that it uses 55 Joules per second and in turn it means that a charge of -4.6 C goes through the lamp every second. How many electrons go through the lamp per second?

Solution: The charge is due to the electrons that go from one side of the circuit to the other, so we can calculate the number of electrons by doing the following:
$Q=N q_{e}$, where Q is the total charge, N is the number of electrons and q_{e} is the charge of one electron and with the values of the problem:
$N=\frac{Q}{q_{e}}=\frac{-4.6 C}{1.6 \times 10^{-19} C}=\mathbf{2 . 8 8} \times 10^{\mathbf{1 9}}$ electrons

