Physics II

Electric Field and Force

$\mathrm{F}=\mathrm{k} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{~d}^{2}} \quad$ Coulomb's law, where $\mathrm{k}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
$E=\frac{F_{\text {test }}}{q_{\text {test }}} \quad$ Definition of electric field. This is a vector.
$E=k \frac{Q}{d^{2}} \quad$ Electric field for a point charge. This is a vector.
Problem 1.- A charge of $\mathrm{q}=6 \mu \mathrm{C}$ is placed at each corner of a square 0.35 m on a side. Determine the magnitude of the force on each charge.

Problem 2.- Determine the electric field magnitude at the origin due to the charges located at A and B. Consider the coordinates given in meters and charge $q_{A}=-2 \mu C$ and $q_{B}=-1 \mu C$.

Problem 3.- Determine the electric field at the origin of coordinates due to the charges located at A and B. Consider the coordinates given in meters and charges $Q_{A}=4 \mu C$ and $Q_{B}=-5 \mu C$. In your answer write the vector as components and find its magnitude.

Problem 4.- Calculate the net force on the positive charge on the right upper corner of the square shown in the figure. Give your answer in magnitude of the vector.

Problem 5.- Calculate the electric field at point " P " in the figure:

Problem 6.- Determine the magnitude and direction of the electric field at a point P midway between charges $q_{1}=-16 \mu \mathrm{C}$ and $q_{2}=+11.2 \mu \mathrm{C}$ that are a distance $L=10 \mathrm{~cm}$ apart.

Problem 7.- Determine the position of a point P between a charge $q_{l}=-4 \mu \mathrm{C}$ and another $q_{2}=+1 \mu \mathrm{C}$ that are at a distance $L=1 \mathrm{~m}$ apart where the electric field has the minimum value.

Problem 8.- Calculate the electric force between an alpha particle and an aluminum nucleus separated by $0.529 \times 10^{-10} \mathrm{~m}$
Charge of an alpha particle $3.2 \times 10^{-19} \mathrm{C}$
Charge of an aluminum nucleus $20.8 \times 10^{-19} \mathrm{C}$

Problem 9.- Find the acceleration experienced by an electron in an electric field of $250 \mathrm{~V} / \mathrm{m}$ Charge of the electron $\mathrm{q}_{\mathrm{e}}=-1.6 \times 10^{-19} \mathrm{C}$ and mass $\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}$

Problem 10.- Given the two charges shown in the figure, at what position " x " is the electric field zero?

Problem 10a.- A charge of $+Q$ coulombs is placed at the origin and a charge of $-2 Q$ coulombs is placed at $x=+1$ meter as shown in the figure. At what point on the x-axis will a test charge of $+q$ coulombs experience zero net force?

Problem 11.- Draw arrows to indicate the direction of the electric field at points \mathbf{A}, \mathbf{B} and \mathbf{C} due to the dipole shown in the figure.

B

Problem 12.- In the following arrangement find an expression for the net force on the charge " q " due to the other two charges " Q " and find the value of " x " that makes the force maximum.

Problem 13.- We want to find the electric field at point " P " due to a wire with constant linear density of charge $\lambda=5 \mu \mathrm{C} / \mathrm{m}$ and length $\mathrm{L}=1 \mathrm{~m}$ located a distance $\mathrm{d}=0.5 \mathrm{~m}$ from point P as shown in the figure.

Problem 14.- Determine the electric field (magnitude and direction) at the origin due to the charges located at A, B and C. Consider the coordinates given in meters and charge of $q_{A}=-2 \mu C$, $\mathrm{q}_{\mathrm{B}}=-1 \mu \mathrm{C}$ and $\mathrm{q}_{\mathrm{C}}=1 \mu \mathrm{C}$.

Problem 15.- Determine the magnitude of the electric field at the origin due to the two charges "A" and "B". Consider the positions given in meters and charge of $A=30 \mu C$ and $B=-30 \mu C$.

Problem 16.- An $18 \mu \mathrm{C}$ charge is placed 1.2 m from an identical $18 \mu \mathrm{C}$ charge. Calculate the electric field and the electric potential at the point midway between them

Problem 17.- The ring shown in the figure has a uniform charge Q and radius R. Determine the electric field at point P , which is located on the axis of the ring a distance " x " from its center. In the same charge distribution, find the electric potential at point P .

Problem 17a.- Each of the rings shown in the figure has uniform charge Q and radius R. Determine the electric field at point P , which is located on the axis of the rings a distance " x " from the center of the left ring.

Problem 18.- Find the net force on a charge $\mathrm{Q}=8.5 \mu \mathrm{C}$ located at the origin of coordinates $(0,0)$ due to a charge $\mathrm{q}_{1}=1.5 \mu \mathrm{C}$ located at $(1.0 \mathrm{~m}, 1.0 \mathrm{~m})$ and another charge $\mathrm{q}_{2}=-2.0 \mu \mathrm{C}$ located at $(-$ $2.0 \mathrm{~m}, 2.0 \mathrm{~m}$).

Problem 19.-Find the magnitude of the net force on a charge $\mathrm{Q}=1.5 \mu \mathrm{C}$ located at position ($0,1.0$ m) due to a charge $q_{a}=2.5 \mu \mathrm{C}$ located at the origin $(0,0)$ and another charge $q_{b}=-5 \mu \mathrm{C}$ located at ($1.0 \mathrm{~m}, 1.0 \mathrm{~m}$).

Problem 20.- Indicate the direction of the electric field at points A, B and C due to the two charges shown in the figure as " + " and "-". Consider the charges identical in magnitude, but one positive and the other negative, as shown.

B

Problem 20a.- Indicate the direction of the electric field at points A, B and C due to the two charges shown in the figure. Consider the charges identical in magnitude, but positive and negative as indicated.

Problem 21.- A sphere of 1.0 m radius is uniformly charged over its entire volume with total charge $\mathrm{Q}=1.5 \times 10^{-6} \mathrm{C}$. Find the electric field inside the sphere at a distance of 0.5 m from its center.

Problem 22.- If a positively charged particle enters a region of uniform electric field which is perpendicular to the particle's initial velocity, will the kinetic energy of the particle increase, decrease or stay the same? Why?

Problem 23.- Determine the electric field at the origin of coordinates due to the charges located at A, B and C. Consider the coordinates given in meters and charges $Q_{A}=4 \mu C, Q_{B}=4 \mu C$ and $\mathrm{Q}_{\mathrm{B}}=5 \mu \mathrm{C}$.
In your answer, write the vector as components.

