Physics II

Electric Potential

$V=\frac{\text { Work }_{\text {test }}}{q_{\text {test }}}$ Definition of electric potential.
$\mathrm{V}=\mathrm{k} \frac{\mathrm{Q}}{\mathrm{d}} \quad$ Electric potential for a point charge.
Problem 1.- Calculate the electric potential energy of an electron in a He^{+}ion. Consider the distance between the nucleus and the electron to be $\mathrm{r}=0.264 \times 10^{-10} \mathrm{~m}$ and

Charge of the nucleus $\quad 3.2 \times 10^{-19} \mathrm{C}$
Charge of the electron $\quad-1.6 \times 10^{-19} \mathrm{C}$

Solution: The value in joules is
Energy $=k \frac{q_{1} q_{2}}{d}=9 \times 10^{9} \frac{\left(3.2 \times 10^{-19}\right)\left(-1.6 \times 10^{-19}\right)}{0.264 \times 10^{-10}}=-\mathbf{1 . 7 6 4} \times 10^{-\mathbf{1 7}} \mathbf{J}$
Converted to eV it is $\mathbf{- 1 0 9} \mathbf{e V}$.
Problem 1a.- Calculate the electric potential energy of an electron in a Li^{++}ion. Consider the distance between the nucleus and the electron to be $\mathrm{r}=0.176 \times 10^{-10} \mathrm{~m}$ and:
The charge of the nucleus is $4.8 \times 10^{-19} \mathrm{C}$.
The charge of the electron is $-1.6 \times 10^{-19} \mathrm{C}$.

Problem 2.- How much work is required to move a test charge $q=1 \mu \mathrm{C}$ from point a to point b ?

Solution: To solve this problem first we calculate the potentials at a and b :
$V_{a}=k \frac{12}{10}+k \frac{(-34)}{17}=-7.2 \times 10^{9}$ volt
$V_{b}=k \frac{12}{6}+k \frac{(-34)}{15}=-2.4 \times 10^{9}$ volt
To find the work we calculate the difference in potential and multiply by the test charge:
$W=\left(V_{b}-V_{a}\right) q_{\text {test }}=\left(-2.4 \times 10^{9}+7.2 \times 10^{9}\right)\left(1 \times 10^{-6}\right)=\mathbf{4 , 8 0 0} \mathbf{~ J}$

Problem 3.- An $18 \mu \mathrm{C}$ charge is placed 1.2 m from an identical $18 \mu \mathrm{C}$ charge. Calculate the electric field and the electric potential at the point midway between them.

Solution: The electric field produced by each charge will be the same in magnitude, but one towards the left and one towards the right, so when you add them together you get zero.

Electric potential is a scalar quantity, so we need to add the potential produced by each charge. The distance that goes in the formula " r " is the distance from the point midway between the charges and each charge, so it is 0.6 m (not 1.2 m) and the potential is:

$$
\mathrm{V}=9 \times 10^{9} \frac{18 \times 10^{-6}}{0.6}+9 \times 10^{9} \frac{18 \times 10^{-6}}{0.6}=\mathbf{5 4 0 , 0 0 0} \mathbf{V}
$$

Problem 4.- Determine the electric potential at the origin due to the charges located at A and B. Consider the coordinates given in meters and charge $q_{A}=-2 \mu C$ and $q_{B}=-1 \mu C$.

Solution: Each charge will contribute a potential and we need to add those two values.
$V=k \frac{Q_{1}}{r_{1}}+k \frac{Q_{2}}{r_{2}}=9 \times 10^{9} \frac{\left(-2 \times 10^{-6}\right)}{1}+9 \times 10^{9} \frac{\left(-1 \times 10^{-6}\right)}{2}=\mathbf{- 2 2 , 5 0 0} \mathrm{V}$

Problem 5.- An alpha particle, which is a helium nucleus with mass $=6.64 \times 10^{-27} \mathrm{~kg}$, is emitted in a radioactive decay with kinetic energy $K E=7.8 \times 10^{6} \mathrm{eV}$. Calculate its speed.

Solution: The kinetic energy in the problem is given in terms of eV , which is the charge of a proton times one volt. For speeds that are not relativistic, we can use the kinetic equation $K E=\frac{1}{2} m v^{2}$, and then the speed is:
$v=\sqrt{\frac{2 K E}{m}}=\sqrt{\frac{2 \times 7.8 \times 10^{6}\left(1.6 \times 10^{-19}\right)}{6.64 \times 10^{-27}}}=\mathbf{1 . 9 4 \times 1 0 ^ { 7 } \mathrm { m } / \mathrm { s } . \mathrm { s } .}$
Problem 6.- Calculate the electric potential due to a uniform ring of radius $\mathrm{R}=1.2 \mathrm{~m}$ that has a total charge of $32 \mu \mathrm{C}$ at a point P on the symmetry axis and a distance $\mathrm{L}=1.6 \mathrm{~m}$ from the center of the ring.

Solution: Notice that the distance from any differential of charge, dq, to P is always the same, namely: $r=\sqrt{R^{2}+L^{2}}=\sqrt{(1.2 \mathrm{~m})^{2}+(1.6 \mathrm{~m})^{2}}=2 \mathrm{~m}$

Therefore, the electric potential is
$\mathrm{V}=\int \frac{\mathrm{kdq}}{\mathrm{r}}=\frac{\mathrm{kq}}{\mathrm{r}}=\frac{9 \times 10^{9}\left(32 \times 10^{-6}\right)}{2}=\mathbf{1 4 4 , 0 0 0}$ volts
Problem 6a.- Calculate the electric potential due to a disk of radius $\mathrm{R}=1.2 \mathrm{~m}$ that has a total charge of $32 \mu \mathrm{C}$, uniformly distributed on its surface, at a point P on the symmetry axis at a distance $\mathrm{L}=1.6 \mathrm{~m}$ from the center of the disk.

Problem 6b.- Each of the rings shown in the figure has uniform charge Q and radius R. Determine the electric potential at P , which is located on the axis of the rings a distance x from the center of the left ring.

Problem 7.- Find the point P on the x -axis on the right side of the positive charge where the electric potential is zero:

Solution: The potential produced by the positive charge at P is $k \frac{10}{x-2}$ and the one produced by the negative charge is $k \frac{(-12)}{x}$, the total potential is zero, so:
$k \frac{10}{x-2}+k \frac{(-12)}{x}=0 \rightarrow x=\mathbf{1 2} \mathrm{m}$

Problem 8.- Calculate the potential energy of an alpha particle separated a distance $2.5 \times 10^{-10} \mathrm{~m}$ from an aluminum nucleus. The charge of an alpha particle is $3.2 \times 10^{-19} \mathrm{C}$ and the one of an aluminum nucleus is $20.8 \times 10^{-19} \mathrm{C}$.

Solution: We first calculate the electric potential due to the nucleus at the indicated position and then multiply by the charge of the alpha particle.

$$
\begin{aligned}
& \mathrm{V}=\mathrm{k} \frac{\mathrm{q}}{\mathrm{r}}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \frac{3.2 \times 10^{-19} \mathrm{C}}{2.5 \times 10^{-10} \mathrm{~m}}=11.52 \mathrm{~V} \\
& \mathrm{E}=\mathrm{qV}=\left(20.8 \times 10^{-19} \mathrm{C}\right) \times(11.52 \mathrm{~V})=\mathbf{2 . 4 0 \times 1 0 ^ { - 1 7 }} \mathbf{J}
\end{aligned}
$$

Problem 8a.- How much energy is necessary to put an alpha particle and a sodium nucleus $0.529 \times 10^{-10} \mathrm{~m}$ apart?
The charge of an alpha particle is $3.2 \times 10^{-19} \mathrm{C}$
The charge of a sodium nucleus is $17.6 \times 10^{-19} \mathrm{C}$

Solution: Like the previous problem, but this time we directly get the energy.

$$
\text { P.E. }=k \frac{q_{1} q_{2}}{r}=9 \times 10^{9} \frac{\left(3.2 \times 10^{-19}\right)\left(17.6 \times 10^{-19}\right)}{0.529 \times 10^{-10}}=9.6 \times 10^{-17} \mathrm{~J}
$$

Problem 9.- A sphere of radius R_{1} has charge Q and another sphere of radius R_{2} is initially uncharged. Then, they are connected through a wire, so charge flows from the first sphere to the second until the potentials are equilibrated. Calculate the charge on each sphere after reaching equilibrium.

Solution: Recall that the voltage on the surface of a sphere that contains charge Q is given by $\frac{\mathrm{kQ}}{\mathrm{R}}$, so after spheres 1 and 2 are at the same potential:

$$
\frac{\mathrm{k}(\mathrm{Q}-\mathrm{q})}{\mathrm{R}_{1}}=\frac{\mathrm{kq}}{\mathrm{R}_{2}}
$$

Where q is the charge transferred from sphere 1 to sphere 2, then:

$$
\frac{\mathrm{k}(\mathrm{Q}-\mathrm{q})}{\mathrm{R}_{1}}=\frac{\mathrm{kq}}{\mathrm{R}_{2}} \rightarrow \mathrm{R}_{2}(\mathrm{Q}-\mathrm{q})=\mathrm{R}_{1} \mathrm{q} \rightarrow \mathrm{q}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{Q}
$$

The remaining charge on sphere 1 is:
$\mathrm{Q}-\mathrm{q}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{Q}$
Problem 10.- Determine the value of the electric potential at a point P midway between a charge $q_{1}=-16 \mu \mathrm{C}$ and another $q_{2}=+11.2 \mu \mathrm{C}$ that are at a distance $L=10 \mathrm{~cm}$ apart.

Solution: Potential is a scalar, so all we need to do is add the two contributions:

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{k} \frac{\mathrm{q}_{1}}{\mathrm{r}}=9 \times 10^{9} \frac{\left(-16 \times 10^{-6}\right)}{0.05}=-2.88 \mathrm{MV} \\
& \mathrm{~V}_{2}=\mathrm{k} \frac{\mathrm{q}_{2}}{\mathrm{r}}=9 \times 10^{9} \frac{\left(11.2 \times 10^{-6}\right)}{0.05}=2.016 \mathrm{MV}
\end{aligned}
$$

Adding the values: $\mathrm{V}=\mathbf{- 8 6 4} \mathbf{~ k V}$

Problem 11.- Determine the electric potential at the origin of coordinates due to the charges located at position A, B and C. Consider the coordinates given in meters and charge of $q_{A}=-2 \mu C$, $\mathrm{q}_{\mathrm{B}}=-1 \mu \mathrm{C}$ and $\mathrm{q}_{\mathrm{C}}=1 \mu \mathrm{C}$.

Solution: We can calculate the contribution from each charge to the potential at the origin:
$V_{A}=k \frac{Q}{d}=9 \times 10^{9} \frac{-2 \times 10^{-6}}{1}=-18,000 V V_{B}=k \frac{Q}{d}=9 \times 10^{9} \frac{-1 \times 10^{-6}}{1}=-9,000 V$
$\mathrm{V}_{\mathrm{C}}=\mathrm{k} \frac{\mathrm{Q}}{\mathrm{d}}=9 \times 10^{9} \frac{1 \times 10^{-6}}{1}=9,000 \mathrm{~V} / \mathrm{m}$
The potential is the sum: $\mathbf{- 1 8 , 0 0 0} \mathbf{V}$
Problem 12.- A free $81 \mu \mathrm{C}$ charge is placed 1.8 mm from an identical, but fixed in space, $81 \mu \mathrm{C}$ charge. The free charge accelerates due to electric repulsion. Calculate the speed of the free charge when it is very far away if its initial velocity was zero and its mass is 2.5 g

Solution: The potential energy is: $\mathrm{Vq}=\mathrm{k} \frac{\mathrm{Q}}{\mathrm{d}} \mathrm{q}$ and this will be traded for kinetic energy, so:
$\frac{1}{2} m v^{2}=\mathrm{k} \frac{\mathrm{Q}}{\mathrm{d}} \mathrm{q} \rightarrow \mathrm{v}=\sqrt{\frac{2 \mathrm{kQq}}{\mathrm{md}}}=\sqrt{\frac{2 \times 9 \times 10^{9} \times\left(81 \times 10^{-6}\right)^{2}}{0.0025 \times 0.0018}}=\mathbf{5 , 1 0 0} \mathbf{~ m} / \mathbf{s}$
Problem 13.- Given the two charges shown in the figure:
a) At what position x is the electric field zero?
b) At what position x is the electric potential zero?
c) Find the position between the two charges where the electric potential is zero.

Solution: The electric field due to the positive charge is:
$E_{p}=k \frac{9 Q}{(d+x)^{2}}$
this vector points towards the right.

On the other hand, the field due to the negative charge points towards the left and has a magnitude of:

$$
E_{n}=k \frac{4 Q}{x^{2}}
$$

For the net field to be zero we need to have:
$k \frac{9 Q}{(d+x)^{2}}=k \frac{4 Q}{x^{2}} \rightarrow x=\mathbf{2 d}$
For the potential to be zero we need:
$k \frac{9 Q}{d+x}=k \frac{4 Q}{x} \rightarrow \boldsymbol{x}=\mathbf{4 d} / \mathbf{5}$
For the potential between the two charges consider the distance to the $-4 Q$ charge to be " x " then:
$k \frac{9 Q}{d-x}=k \frac{4 Q}{x} \rightarrow \boldsymbol{x}=\mathbf{4 d} / \mathbf{1 3}$
Problem 14.- If a positively charged particle enters a region of uniform electric field which is perpendicular to the particle's initial velocity, will the kinetic energy of the particle increase, decrease or stay the same? Why?

Solution: It will increase. This is because the particle will accelerate in the direction of the field from an initial zero velocity in that direction.

Problem 15.- In an X ray machine for dentists, electrons are accelerated from a potential at zero to a maximum of 50 kV . These electrons hit a target (made of copper, for example) and generate X rays. Calculate the speed of the electrons just before hitting the target.
The charge of an electron is $-1.6 \times 10^{-19} \mathrm{C}$.
The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$.

Solution: 50 kV is already enough to start generating relativistic effects of 0.5%, but we will ignore that correction for now and use the non-relativistic equation:
$\frac{1}{2} m v^{2}=\mathrm{Vq}$
$\rightarrow \mathrm{v}=\sqrt{\frac{2 \mathrm{Vq}}{\mathrm{m}}}=\sqrt{\frac{2 \times 50000 \times\left(1.6 \times 10^{-19}\right)}{9.1 \times 10^{-31}}}=1.33 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Problem 15a.- In analytical chemistry there are instruments known as HPLC that use a mass spectrometer where electrons (mass $9.1 \times 10^{-31} \mathrm{~kg}$, charge $1.6 \times 10^{-19} \mathrm{C}$) are accelerated to 70 V to ionize molecules. Calculate the speed of these electrons.

Solution: $v=\sqrt{\frac{2 \times q V}{m}}=\sqrt{\frac{2 \times 1.6 \times 10^{-19} \times 70}{9.1 \times 10^{-31}}}=4.96 \times 10^{6} \mathrm{~m} / \mathrm{s}$

Problem 16.- In the figure we see two charges of $+6 n C$ and -51 nC fixed in the indicated positions. Considering infinite to be the reference for the electric potential $(\mathrm{V}=0)$, calculate:
a) Voltage at "a"
b) Voltage at "b"
c) The external work needed to move a charge of $-3 n C$ from "a" to "b"

Solution:

a) $V_{a}=9 \times 10^{9} \frac{6 \times 10^{-9}}{10}-9 \times 10^{9} \frac{51 \times 10^{-9}}{17}=5.4 \mathrm{~V}-27 \mathrm{~V}=\mathbf{- 2 1 . 6} \mathrm{V}$
b) $V_{b}=9 \times 10^{9} \frac{6 \times 10^{-9}}{6}-9 \times 10^{9} \frac{51 \times 10^{-9}}{15}=9 \mathrm{~V}-30.6 \mathrm{~V}=-21.6 \mathrm{~V}$
c) Zero

Problem 17.- In this charge distribution, find the electric potential at the origin of coordinates.

Solution: We can find the electric potential at the origin by adding two scalars: A positive contribution from Q_{A} and a negative one from Q_{B}

$$
\begin{aligned}
& V_{A}=k \frac{Q_{A}}{r}=9 \times 10^{9} \frac{4 \times 10^{-6}}{3}=12,000 \mathrm{~V} \\
& V_{B}=k \frac{Q_{B}}{r}=9 \times 10^{9} \frac{\left(-5 \times 10^{-6}\right)}{2 \sqrt{2}}=-15,909 \mathrm{~V}
\end{aligned}
$$

So, the electric potential is $\mathbf{- 3 , 9 1 0} \mathbf{V}$
Problem 18.- Determine the electric potential at the origin of coordinates due to the charges located at A, B and C. Consider the coordinates given in meters and charges $Q_{A}=4 \mu \mathrm{C}, \mathrm{Q}_{\mathrm{B}}=4 \mu \mathrm{C}$ and $\mathrm{Q}_{\mathrm{C}}=5 \mu \mathrm{C}$.

