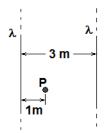
## Physics II


## Gauss

**Problem 1.-** Calculate the electric field 2cm away from a long thin wire that has a uniform linear density of charge  $\lambda = 25 \mu C / m$ 

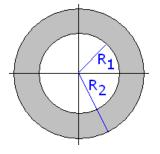
**Problem 2.-** There are two parallel infinite wires with linear density of charge  $\lambda = 2.5 \mu C / m$  separated by 3 meters.

Calculate the electric field at point "P".

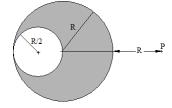
Suggestion: Use Gauss's theorem twice and add the vectors



**Problem 3.-** Find the electric field in all space due to a spherical distribution of charge given by the density.


 $\rho = a(R-r) \quad r < R$ 

**Problem 4.-** A sphere of radius *R* has a charge density  $\rho = Cr^3$ , where *C* is a constant and *r* is the distance to center of the sphere. Find the magnitude of the electric field at a distance r=R/2.


**Problem 5.-** A spherical shell of internal radius  $R_1$  and external  $R_2$  has a constant charge density in its volume  $\rho$ .

Calculate the electric field at a distance r from the center. Consider 3 cases:

- a) r<**R**1
- b)  $R_1 < r < R_2$
- c) r>R<sub>2</sub>



**Problem 6.-** Find the electric field at point P due to a sphere of radius R and density of charge  $\rho$ , where a sphere of radius R/2 has been extracted, leaving that volume hollow, as shown in the figure.

