Physics II

Gauss

Problem 1.- Calculate the electric field 2 cm away from a long thin wire that has a uniform linear density of charge $\lambda=25 \mu \mathrm{C} / \mathrm{m}$

Problem 2.- There are two parallel infinite wires with linear density of charge $\lambda=2.5 \mu \mathrm{C} / \mathrm{m}$ separated by 3 meters.
Calculate the electric field at point "P".
Suggestion: Use Gauss's theorem twice and add the vectors

Problem 3.- Find the electric field in all space due to a spherical distribution of charge given by the density.
$\rho=a(R-r) \quad r<R$

Problem 4.- A sphere of radius R has a charge density $\rho=C r^{3}$, where C is a constant and r is the distance to center of the sphere. Find the magnitude of the electric field at a distance $r=R / 2$.

Problem 5.- A spherical shell of internal radius R_{1} and external R_{2} has a constant charge density in its volume ρ.
Calculate the electric field at a distance r from the center. Consider 3 cases:
a) $r<R_{1}$
b) $\mathrm{R}_{1}<\mathrm{r}<\mathrm{R}_{2}$
c) $\mathrm{r}>\mathrm{R}_{2}$

Problem 6.- Find the electric field at point P due to a sphere of radius R and density of charge ρ, where a sphere of radius $\mathrm{R} / 2$ has been extracted, leaving that volume hollow, as shown in the figure.

