Physics II

Gauss

Problem 1.- Calculate the electric field 2 cm away from a long thin wire that has a uniform linear density of charge $\lambda=25 \mu \mathrm{C} / \mathrm{m}$

Solution: Consider a cylinder that surrounds a short section of the wire l :

The charge enclosed by the cylinder is the length of the wire inside the cylinder times the linear density:
$Q=\lambda l$
The electric field points away from the wire and perpendicular to the lateral surface of the cylinder, so Gauss's law indicates:
E_{\perp} Area $=4 \pi \mathrm{kQ} \rightarrow \mathrm{E}(2 \pi \mathrm{l} \mathrm{l})=4 \pi \mathrm{k}(\lambda \mathrm{l}) \rightarrow \mathrm{E}=\frac{2 \mathrm{k} \lambda}{\mathrm{r}}$
And with the values of the problem:
$\mathrm{E}=\frac{2 \mathrm{k} \lambda}{\mathrm{r}}=\frac{2\left(9 \times 10^{9}\right)\left(25 \times 10^{-6}\right)}{0.02}=\mathbf{2 . 2 5 \times 1 0 ^ { 7 }} \mathbf{V} / \mathbf{m}$

Problem 2.- There are two parallel infinite wires with linear density of charge $\lambda=2.5 \mu \mathrm{C} / \mathrm{m}$ separated by 3 meters.
Calculate the electric field at point P .
Suggestion: Use Gauss's theorem twice and add the vectors.

Solution: You can use Gauss' theorem to find the electric field produced by one infinite wire, which is $E=\frac{2 k \lambda}{r}$. Here we have two wires, each one contributes an electric field calculated below.

$$
\begin{aligned}
& E_{1}=\frac{2\left(9 \times 10^{9}\right)\left(2.5 \times 10^{-6}\right)}{1}=45,000 \mathrm{~V} / \mathrm{m} \\
& E_{2}=\frac{2\left(9 \times 10^{9}\right)\left(2.5 \times 10^{-6}\right)}{2}=22,500 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

One vector is to the right and the other to the left, so the sum gives $\mathbf{E}=\mathbf{2 2 , 5 0 0} \mathbf{~ V} / \mathbf{m}$ to the right.
Problem 3.- Find the electric field in all space due to a spherical distribution of charge given by the density.
$\rho=a(R-r) \quad r<R$
Solution: We use spherical surfaces to solve this problem. The charge enclosed can be found by integration. Due to the spherical shape, we can use spherical shells as volume differentials.

For $r>R$, outside the sphere
$E=\frac{k}{r^{2}} \int_{0}^{R} a(R-r) 4 \pi r^{2} d r=\frac{\pi k a R^{4}}{3 r^{2}}$
For $r<R$, inside the sphere
$E=\frac{k}{r^{2}} \int_{0}^{r} a(R-r) 4 \pi r^{2} d r=4 \pi k a\left(\frac{R r}{3}-\frac{r^{2}}{4}\right)$
Problem 4.- A sphere of radius R has a charge density $\rho=\mathrm{Cr}^{3}$, where C is a constant and r is the distance to center of the sphere. Find the magnitude of the electric field at a distance $r=R / 2$.

Solution: According to Gauss law
$E($ Area $)=\frac{Q}{\varepsilon_{0}}$,
And for a distance $r=R / 2$ the area is

$$
\text { Area }=4 \pi\left(\frac{R}{2}\right)^{2}=\pi R^{2}
$$

The enclosed area is found by integration.
$Q=\int_{0}^{R / 2} \rho d V=\int_{0}^{R / 2} C r^{3}\left(4 \pi r^{2} d r\right)=\frac{\pi C R^{6}}{96}$
Then, the electric field is:
$\pi R^{2} E=\frac{\pi C R^{6}}{96 \varepsilon_{。}} \rightarrow E=\frac{C R^{4}}{96 \varepsilon_{。}}$
Problem 5.- A spherical shell of internal radius R_{1} and external R_{2} has a constant charge density in its volume ρ.
Calculate the electric field at a distance r from the center. Consider 3 cases:
a) $\mathrm{r}<\mathrm{R}_{1}$
b) $\mathrm{R}_{1}<\mathrm{r}<\mathrm{R}_{2}$
c) $\mathrm{r}>\mathrm{R}_{2}$

Solution: Inside the shell, when $r<R_{1}$ the electric field is zero, because the enclosed charge is zero. At a point in the shell, where $\mathrm{R}_{1}<\mathrm{r}<\mathrm{R}_{2}$ we can use Gauss law, but being careful to only consider the charge between R_{1} and r .

The charge is found by multiplying the density times the volume between R_{1} and r . We can do this because the density is constant, otherwise we would need to divide the shell into layers (like an onion) and integrate.

The enclosed charge is: $\mathrm{Q}=\rho\left(\frac{4}{3} \pi r^{3}-\frac{4}{3} \pi R_{1}^{3}\right)$
And Gauss law gives us
$\mathrm{E}=\frac{\mathrm{kQ}}{r^{2}}=\frac{k \rho\left(\frac{4}{3} \pi r^{3}-\frac{4}{3} \pi R_{1}^{3}\right)}{r^{2}}=\frac{4}{3} \pi k \rho\left(r-R_{1}^{3} / r^{2}\right)$

Finally, outside the sphere we can calculate the electric field as if all the charge where at the center of the shell. The total charge is:
$\mathrm{Q}=\rho\left(\frac{4}{3} \pi R_{2}{ }^{3}-\frac{4}{3} \pi R_{1}^{3}\right)$
And the electric field: $\mathrm{E}=\frac{\mathrm{kQ}}{r^{2}}=\frac{4}{3} \pi \frac{k \rho\left(R_{2}{ }^{3}-R_{1}{ }^{3}\right)}{r^{2}}$
Problem 6.- Find the electric field at point P due to a sphere of radius R and density of charge ρ, where a sphere of radius $\mathrm{R} / 2$ has been extracted, leaving that volume hollow, as shown in the figure.

Solution: By using Gauss law, each distribution of charge can be considered as a source of electric field. A larger sphere R and a smaller sphere $R / 2$, with negative density
$E=\frac{k \rho \frac{4}{3} \pi R^{3}}{(2 R)^{2}}-\frac{k \rho \frac{4}{3} \pi\left(\frac{R}{2}\right)^{3}}{(2.5 R)^{2}}=\frac{23}{75} \pi k R \rho$

