Physics II

More electric force problems

Problem 1.- In an analog oscilloscope, the screen measures 20 cm vertically and the electron gun emits electrons with $15,000 \mathrm{eV}$ of kinetic energy, 25 cm behind it.
To sweep the screen, an electric field is applied in the vertical direction. Calculate the strength of this field, if it is enough to deflect the trajectory of the electrons 10 cm down as shown in the figure.

Problem 2.- In the figure we have: A sphere with radius $\mathrm{R}=2 \mathrm{~m}$, uniformly charged in all its volume with $\mathrm{Q}_{1}=-30 \mu \mathrm{C}$, a point charge of value $\mathrm{Q}_{2}=10 \mu \mathrm{C}$ inside the sphere at position $(-3,0)$ and a 3 m long wire located on the X -axis with total charge $\mathrm{Q}_{3}=-20 \mu \mathrm{C}$ uniformly distributed over its length. Calculate
a) The electric force over Q_{2} due to Q_{1}.
b) The electric force over Q_{2} due to Q_{3}.
c) The electric force over Q_{1} due to Q_{3}.

Problem 3.- Figure (A) shows a spring with un-stretched length $h_{o}=0.12 \mathrm{~m}$. Then you hang a mass $\mathrm{m}=0.002 \mathrm{~kg}$ with charge $\mathrm{q}=1 \mu \mathrm{C}$ and the spring stretches as shown in (B) reaching equilibrium with a length $\mathrm{h}_{1}=0.14 \mathrm{~m}$. Finally, a charge Q is place below q as shown in (C) and the new equilibrium length is $\mathrm{h}_{2}=0.13 \mathrm{~m}$ with a charge separation $\mathrm{L}=0.045 \mathrm{~m}$.
Calculate:
a) The spring constant k_{r}
b) The force charge Q produces on q in figure (C)
c) The value of charge Q

