Physics II

More electrostatics problems

Problem 1.- Find the electric field at the origin of coordinates due to the objects shown in the figure and describe below.
a) A segment of wire of linear charge density λ
b) A wire in the shape of an arc of a circle with radius a, and linear charge density λ.
c) An infinite straight wire with linear charge density λ.

Problem 2.- Find the electric force on the point charge $Q(+)$ located at ($4 \mathrm{a}, 0$), due to:
a) The $2 a$-long wire shown in the figure with linear charge density -3λ
b) A wire in the shape of an arc with radius a, and linear charge density 2λ
c) An infinite plane of surface charge density σ parallel to the xz plane

Problem 3.- You have an infinite plane with surface charge density -3σ, a point charge Q and a wire with linear charge density 2λ. Calculate:
a) The electric force on the point charge.
b) The electric force on the wire.

Problem 4.- The figure shows a sphere with radius r and uniform charge density ρ, a wire in the shape of an arc with linear charge density $-\lambda$, a straight wire with linear charge density λ and a point charge Q . Find the electric force on Q .

Problem 5.- Find the electric field at point $(2,3)$ due to
a) The straight wire of linear density λ
b) The wire in the shape of an arc with linear charge density $-\lambda$
c) The hollow sphere whose charge density for $r=\left[\begin{array}{ll}1 & 2\end{array}\right]$ is $\rho=\frac{\rho_{o}}{2 \pi r^{2}}$

Problem 6.- The figure shows four charges:
$-Q$ at $(0,2 m)$,
+Q at $(2 \mathrm{~m}, 0)$,
-2 Q at $(-1 \mathrm{~m}, 0)$ and
3Q at $(0,-2 m)$.
Calculate:
a) The horizontal component of the electric field $\left(\mathrm{E}_{\mathrm{x}}\right)$ at the origin of coordinates $(0,0)$
b) The vertical component of the electric field $\left(\mathrm{E}_{\mathrm{y}}\right)$ at the origin of coordinates $(0,0)$
c) The magnitude of the electric field at the origin of coordinates $(0,0)$ Answer in terms of Q and $\mathrm{k}\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$

Problem 7.- The figure shows

- A point charge -Q at $(-2 m, 0)$
- A 90-degree arc of radius $\mathrm{R}=2 \mathrm{~m}$ centered at the origin of coordinates and with uniformly distributed charge over its length equal to +2 Q
- A 1-meter wire located between the points $(0,-1 \mathrm{~m})$ and $(0,-2 \mathrm{~m})$ with charge -3 Q distributed uniformly over its length.

Find the electric field at the origin due to
a) The point charge.
b) The 90 -degree arc.
c) The straight wire.

Respond in terms of Q and $\mathrm{k}\left(9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$

Problem 8.- You have three identical charges $q=1 \mu C$ located at the corners of an equilateral triangle with side $\mathrm{d}=0.2 \mathrm{~m}$. Calculate the force on one of the charges.

Problem 9.- You have a cylinder with total charge $Q=1 n C$ uniformly distributed over all its volume. Radius $R=0.1 m$, height $h=4 m$ and you want to find the electric field at a point 10 m below its base.

