Physics II

Ampere's Law

Problem 1.- Calculate the magnitude and direction of the magnetic field produced at point P due to the currents in two long parallel conductors with radius 2 cm each and separated 4 cm as shown in the figure. Assume that the currents are uniformly distributed in the conductors. The current of the left conductor is 150 A towards us and the one on the right conductor is 150 A away from us.

Problem 2.- Calculate the magnetic field in all space, produced by the long coaxial cable whose cross section is shown in the figure. The central conductor brings a current I towards us, and the external conductor takes it away from us. Assume that the currents are uniformly distributed over their conductors.

Solution: Case $\mathrm{r}<\mathrm{a}$

In this case, the direction of the magnetic field is anti-clockwise and we can calculate it with Ampere's law

$$
B 2 \pi r=\mu_{o} I_{\text {enclosed }},
$$

Where we notice that the current is only the one inside a circle with radius r. Then
$I_{\text {enclosed }}=\frac{I}{\pi a^{2}} \pi r^{2}$, and substituting in the equation above we get:
$B=\frac{\mu_{o} I r}{2 \pi a^{2}}$

Case $\mathrm{a}<\mathrm{r}<\mathrm{b}$

This time, the enclosed current is all of it (I). And replacing this in Ampere's law we get:
$B 2 \pi r=\mu_{o} I \rightarrow B=\frac{\mu_{o} I}{2 \pi r}$
Case $\mathrm{b}<\mathrm{r}<\mathrm{c}$

When applying Ampere's law in this case we have two currents enclosed. One is I towards us and the other is in the space between r and b, which is in the opposite direction. To calculate this last current, we multiply the area between r and b by the current density in that conductor.

$$
I_{\text {enclosed }}=I-\frac{I}{\pi c^{2}-\pi b^{2}}\left(\pi r^{2}-\pi b^{2}\right)=I \frac{c^{2}-r^{2}}{c^{2}-b^{2}}
$$

Replacing this equation in Ampere's law, we obtain:

$$
B=\frac{\mu_{o} I}{2 \pi r} \frac{c^{2}-r^{2}}{c^{2}-b^{2}}
$$

Case $c<r$
Since the net current is zero, the field is zero as well in this case.
A graph for the case $a=0.5, b=2.5$ and $c=3$ looks like this:

