Physics II

Magnetic Field Production

Magnetic field produced by a long wire: $\mathrm{B}=\frac{\mu_{o} I}{2 \pi r}$, where $\mu_{o}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$ and r is the distance to the wire.

Problem 1.- Find the magnetic field at point "P" produced by the two long straight current carrying wires shown in the figure. Answer with magnitude and direction.

Problem 1a.- Find the magnetic field at point " P " produced by the two long straight current carrying wires shown in the figure. Answer with magnitude and direction.

Problem 2.- Two long thin parallel wires are separated 25 m and carry currents $I=150 \mathrm{~A}$ in the same direction. Calculate the magnetic field at a point P located 24 m from one wire and 7 m from the other.

Problem 2a.- Find the magnetic field at point "P" produced by the two long straight current carrying wires shown in the figure:

Problem 3.- Calculate the magnetic field at points A and B produced by the long parallel wires shown in the figure. Point A is in the middle of the two wires.

Problem 4.- Indicate the direction of the magnetic field at points \mathbf{A}, \mathbf{B} and \mathbf{C} due to the two identical bar magnets.

Problem 5.- Indicate if the following quantities are vectors or scalars and the units used to measure them:

(i) Electric potential:	Vector or scalar?	Units?
(ii) Electric field	Vector or scalar?	Units?
(iii) Magnetic field	Vector or scalar?	Units?

Problem 6.- What must be the direction and magnitude of the current I_{1} in the long straight wire if the magnetic field at P is zero?

Problem 7.- Three long wires carry the currents shown in the figure below. Calculate the magnetic field at P , which is the middle point between the two top wires. And calculate the magnetic force per unit length on the top conductor.

Problem 8.- Two wires are bent in the shape of semicircles of radius a as shown below. If the top wire has a resistance $2 R$ and the bottom one R, find the magnetic field at the centers in terms of the total current I.

