Physics II

Magnetic Field Production

Magnetic field produced by a long wire: $\mathrm{B}=\frac{\mu_{o} I}{2 \pi r}$, where $\mu_{o}=4 \pi \times 10^{-7} \mathrm{Tm} / \mathrm{A}$ and r is the distance to the wire.

Problem 1.- Find the magnetic field at point "P" produced by the two long straight current carrying wires shown in the figure. Answer with magnitude and direction.

Solution: We can calculate the magnetic field produced by each current at point "P" using Ampere's law:

$$
\begin{aligned}
& \mathrm{B}_{1}=\frac{\mu_{o} I_{1}}{2 \pi r}=\frac{4 \pi \times 10^{-7}(15 A)}{2 \pi(3 m)}=1 \mu \mathrm{~T} \\
& \mathrm{~B}_{2}=\frac{\mu_{o} I_{2}}{2 \pi r}=\frac{4 \pi \times 10^{-7}(20 A)}{2 \pi(4 m)}=1 \mu \mathrm{~T}
\end{aligned}
$$

The right-hand rule indicates that the two vectors point upwards as shown in the figure:

The sum of the two vectors is $2 \mu \mathbf{T}$, upward direction.
Problem 1a.- Find the magnetic field at point "P" produced by the two long straight current carrying wires shown in the figure. Answer with magnitude and direction.

Solution: We can calculate the magnetic field produced by each current at point "P" using Ampere's law:

$$
\begin{aligned}
& \mathrm{B}_{1}=\frac{\mu_{o} I_{1}}{2 \pi r}=\frac{4 \pi \times 10^{-7}(30 A)}{2 \pi(3 m)}=2 \mu \mathrm{~T} \\
& \mathrm{~B}_{2}=\frac{\mu_{o} I_{2}}{2 \pi r}=\frac{4 \pi \times 10^{-7}(80 \mathrm{~A})}{2 \pi(4 m)}=4 \mu \mathrm{~T}
\end{aligned}
$$

The right-hand rule indicates that B_{1} points upwards and B_{2} points downwards as shown in the figure:

The sum of the two vectors is $2 \boldsymbol{\mu} \mathbf{T}$, downward direction.
Problem 2.- Two long thin parallel wires are separated 25 m and carry currents $I=150 \mathrm{~A}$ in the same direction. Calculate the magnetic field at a point P located 24 m from one wire and 7 m from the other.

Solution: Each wire will generate a magnetic field vector at point P .

Magnetic field produced by a long wire: $\mathrm{B}=\frac{\mu_{o} I}{2 \pi r}$, where $\mu_{o}=4 \pi \times 10^{-7}$
For the wire that is 24 meters away: $B_{1}=\frac{\mu_{o} I}{2 \pi r}=\frac{4 \pi \times 10^{-7} \times 150}{4 \pi \times 24}=1.25 \mu \mathrm{~T}$
For the wire that is 7 meters away: $\mathrm{B}_{2}=\frac{\mu_{0} I}{2 \pi r}=\frac{4 \pi \times 10^{-7} \times 150}{4 \pi \times 7}=4.28 \mu \mathrm{~T}$
Now we need to add the vectors. To do that we notice that they make an angle of 90°, so adding them requires Pythagoras theorem:

$$
B=\sqrt{\mathrm{B}_{1}^{2}+\mathrm{B}_{2}^{2}}=\sqrt{1.25^{2}+4.28^{2}} \mu T=4.45 \mu \mathrm{~T}
$$

Problem 2a.- Find the magnetic field at point " P " produced by the two long straight current carrying wires shown in the figure:

Solution: Each wire produces a magnetic field at point P as follows:

The magnitudes of the vectors are:

$$
\begin{aligned}
& \mathrm{B}_{1}=\frac{\mu_{o} I_{1}}{2 \pi r_{1}}=\frac{4 \pi \times 10^{-7}(36)}{2 \pi(3)}=2.4 \times 10^{-6} T \\
& \mathrm{~B}_{2}=\frac{\mu_{o} I_{2}}{2 \pi r_{2}}=\frac{4 \pi \times 10^{-7} \frac{T m}{A}(20)}{2 \pi(4)}=1 \times 10^{-6} T
\end{aligned}
$$

Since the vectors are at 90°, to add them we calculate:
$\mathrm{B}=\sqrt{B_{1}^{2}+B_{2}^{2}}=\mathbf{2 . 6} \times \mathbf{1 0 - 6} \mathbf{T}$
Problem 3.- Calculate the magnetic field at points A and B produced by the long parallel wires shown in the figure. Point A is in the middle of the two wires.

Solution: The magnetic field at point A is zero.
At point B there are two contributions:
Due to $\mathrm{I}_{1}: B=\frac{\mu_{o} I_{1}}{2 \pi r}=\frac{4 \pi \times 10^{-7} \times 12}{2 \pi(6)}=4 \times 10^{-7}$ Tesla
Due to $\mathrm{I}_{2}: B=\frac{\mu_{0} I_{2}}{2 \pi r}=\frac{4 \pi \times 10^{-7} \times 12}{2 \pi(2)}=12 \times 10^{-7}$ Tesla
The two vectors point in the same direction, so they add to $\mathbf{1 6 \times 1 0} \mathbf{1 0}^{-\mathbf{7}}$ tesla

Problem 4.- Indicate the direction of the magnetic field at points \mathbf{A}, \mathbf{B} and \mathbf{C} due to the two identical bar magnets.

Problem 5.- Indicate if the following quantities are vectors or scalars and the units used to measure them:
(i) Electric potential
(ii) Electric field
(iii) Magnetic field

Vector or scalar? \qquad Units? \qquad
Vector or scalar? \qquad Units? \qquad
Vector or scalar? \qquad Units? \qquad

Solution:

(i) Electric potential
(ii) Electric field
(iii) Magnetic field

Scalar, measured in volts or J/C.
Vector, measured in V/m or N/C.
Vector, measured in tesla (T) or gauss (G).

Problem 6.- What must be the direction and magnitude of the current I_{1} in the long straight wire if the magnetic field at P is zero?

Solution: The direction of I_{2} is such that at P it produces a magnetic field towards the figure. The current I_{1} must flow to the right to counteract I_{2}. We equal the two magnitudes to get zero.
$B_{\text {wire }}=\frac{\mu_{o} I_{1}}{2 \pi D}$
$B_{\text {loop }}=\frac{\mu_{o} I_{2}}{2 R}$
$\rightarrow I_{1}=\frac{\pi D}{R} I_{2}$

Problem 7.- Three long wires carry the currents shown in the figure below. Calculate the magnetic field at P , which is the middle point between the two top wires. And calculate the magnetic force per unit length on the top conductor.

Solution: If we call the magnetic field at P produced by the wires B_{1}, B_{2} and B_{3}, their magnitudes are
$B_{1}=\frac{\mu_{o} I}{2 \pi d / 2}$
$B_{2}=\frac{\mu_{o} I}{2 \pi d / 2}$
$B_{3}=\frac{\mu_{o} I}{2 \pi 3 d / 2}$
But we notice that B_{1} y B_{2} point towards the figure, while B_{3} points away from it, so the total field is $B_{1}=\frac{5 \mu_{o} I}{3 \pi d}$ towards the figure.
To find the force per unit length on the top cable, we notice that the field at its position is due to wires 2 and 3
$B=\frac{\mu_{o} I}{2 \pi d}-\frac{\mu_{o} I}{2 \pi 2 d}=\frac{\mu_{o} I}{4 \pi d}$ towards the figure.
The force per unit length is $\frac{F}{l}=\frac{\mu_{o} I^{2}}{4 \pi d}$ directed upwards.
Problem 8.- Two wires are bent in the shape of semicircles of radius a as shown below. If the top wire has a resistance $2 R$ and the bottom one R, find the magnetic field at the center in terms of the total current I.

Solution: Since the resistance at the top is higher, the current will be lower. We can use Ohm's law to calculate the currents. If we call them I_{1} and I_{2} as indicated:

Ohm's law means that $2 \mathrm{RI}_{1}=\mathrm{RI}_{2}$, which means that I_{1} is half I_{2}. And the sum is I , so the currents are $\mathrm{I}_{1}=\mathrm{I} / 3$ and $\mathrm{I}_{2}=2 \mathrm{I} / 3$.

With the values of the currents, we calculate the magnetic field produced by the semicircles at P :
$B_{1}=\frac{1}{2} \frac{\mu_{0} I_{1}}{2 a}=\frac{1}{2} \frac{\mu_{0} I / 3}{2 a}=\frac{\mu_{0} I}{12 a}$
$B_{2}=\frac{1}{2} \frac{\mu_{0} I_{1}}{2 a}=\frac{1}{2} \frac{\mu_{0} 2 I / 3}{2 a}=\frac{\mu_{0} I}{6 a}$

Notice that we used half the value of a circle for each semicircle.
When adding, the vector produced by the top semicircle is towards the figure and the one from the bottom is out of the figure. Taking this into account the magnetic field at P is
$B=\frac{\mu_{0} I}{12 a}$, out of the figure.

