
Physics II 

Rotating Charged Ring and Disk 
 

Problem 1.- Find the magnetic field at point P due to a ring of radius R, uniformly charged with 

charge Q rotating with angular frequency ω as shown in the figure. 

  

 
 

Solution: We use Biot and Savart’s law to find the magnetic field. Let’s divide the ring into 

differentials of length dl as follows: 

 
 

In Biot and Savart’s law: 
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this case it is Q divided by one period of rotation, which can be written in terms of the angular 

velocity: 
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Notice that the angle between the vectors ld
�

 and r̂  is 90º, so the cross product will have 

magnitude equal to ld
�

(since the magnitude of r̂  is 1) and it will be pointed at 90º to the plane 

formed by the two vectors. 

Different vectors ld
�

and r̂ will generate cross products in different directions and because of 

symmetry only the x-component will remain after integrating, so we only need to consider the x-

component. The projection of rld ˆ×
�

on the x-axis is αsindl , so the integral will be: 



 

2222

sin

2
)2(

sin

4

sin

4

ˆ

4 r

IR
R

r

I
dl

r

I

r

rlId
B

αµ
π

α

π

µα

π

µ

π

µ
���

�

===
×

=   

 

Replacing 
r

R
=αsin , and 

22
xRr += we get: 
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A graph in terms of x/R looks as follows: 
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Notice that for values of x <<R we can approximate the value of B to: 
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And for values of x>>R we can approximate the value of B to: 
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�= , which is an inverse cubic approximation. 

 

 

 

 

 

 

 



Problem 2.- Find the magnetic field at point P due to the disk of radius R, uniformly charged 

with charge Q rotating with angular frequency of ω as shown in the figure. 

 

 
 

Solution: In problems like this, we want to divide the object (the disk) into simpler figures, like 

rings. Since we already have a solution for a ring of charge Q rotating with angular velocity ω  

we write the same equation in terms of a differential of charge: 
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If we consider a thin ring the differential of charge will be: 
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substituting this in the equation above, we get: 
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To integrate we have several alternatives. For example, by substitution: θ= tanxr  
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