Physics 11
Rotating Charged Ring and Disk

Problem 1.- Find the magnetic field at point P due to a ring of radius R, uniformly charged with
charge Q rotating with angular frequency o as shown in the figure.
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Solution: We use Biot and Savart’s law to find the magnetic field. Let’s divide the ring into
differentials of length dI as follows:
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In Biot and Savart’s law: dB = :L_ Idlzxr
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this case it is Q divided by one period of rotation, which can be written in terms of the angular
velocity:

the electric current is the charge divided by time, in
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Notice that the angle between the vectors dl and 7 is 90°, so the cross product will have

magnitude equal to dl (since the magnitude of 7 is 1) and it will be pointed at 90° to the plane
formed by the two vectors.

Different vectors dl and 7 will generate cross products in different directions and because of
symmetry only the x-component will remain after integrating, so we only need to consider the x-

component. The projection of dl X7 on the x-axis is dIsine, so the integral will be:
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Replacing sina = R ,and r =+ R* +x” we get:

IR?
B=t-

A graph in terms of x/R looks as follows:
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Notice that for values of x <<R we can approximate the value of B to:
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{1— ;;2 } , which is a parabolic approximation.

And for values of x>>R we can approximate the value of B to:
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, which is an inverse cubic approximation.




Problem 2.- Find the magnetic field at point P due to the disk of radius R, uniformly charged
with charge Q rotating with angular frequency of @ as shown in the figure.
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Solution: In problems like this, we want to divide the object (the disk) into simpler figures, like
rings. Since we already have a solution for a ring of charge Q rotating with angular velocity @
we write the same equation in terms of a differential of charge:
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If we consider a thin ring the differential of charge will be: dQ= (132 27rdr = Qlirzdr and

substituting this in the equation above, we get:
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To integrate we have several alternatives. For example, by substitution: r = x tan 0
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