Physics II

Rotating Charged Ring and Disk

Problem 1.- Find the magnetic field at point P due to a ring of radius R, uniformly charged with charge Q rotating with angular frequency ω as shown in the figure.

Solution: We use Biot and Savart's law to find the magnetic field. Let's divide the ring into differentials of length $d l$ as follows:

In Biot and Savart's law: $d \vec{B}=\frac{\mu_{\circ}}{4 \pi} \frac{\operatorname{Id} \overrightarrow{\mathrm{l}} \times \hat{\mathrm{r}}}{\mathrm{r}^{2}}$ the electric current is the charge divided by time, in this case it is Q divided by one period of rotation, which can be written in terms of the angular velocity:
$\mathrm{I}=\frac{\mathrm{Q}}{\mathrm{T}}=\mathrm{Qf}=\frac{\mathrm{Q} \omega}{2 \pi}$
Notice that the angle between the vectors $d \vec{l}$ and \hat{r} is 90°, so the cross product will have magnitude equal to $d \vec{l}$ (since the magnitude of \hat{r} is 1) and it will be pointed at 90° to the plane formed by the two vectors.
Different vectors $d \vec{l}$ and \hat{r} will generate cross products in different directions and because of symmetry only the x-component will remain after integrating, so we only need to consider the x component. The projection of $d \vec{l} \times \hat{r}$ on the x -axis is $d l \sin \alpha$, so the integral will be:
$B=\int \frac{\mu}{4 \pi} \frac{I d \vec{l} \times \hat{r}}{r^{2}}=\frac{\mu_{\circ}}{4 \pi} \frac{I \sin \alpha}{r^{2}} \int d l=\frac{\mu_{\circ}}{4 \pi} \frac{I \sin \alpha}{r^{2}}(2 \pi R)=\frac{\mu_{\circ}}{2} \frac{I R \sin \alpha}{r^{2}}$
Replacing $\sin \alpha=\frac{R}{r}$, and $r=\sqrt{R^{2}+x^{2}}$ we get:
$B=\frac{\mu_{\mathrm{o}}}{2} \frac{I R^{2}}{\left(R^{2}+x^{2}\right)^{3 / 2}}$ or $B=\frac{\mu_{\circ}}{4 \pi} \frac{Q R^{2} \omega}{\left(R^{2}+x^{2}\right)^{3 / 2}}$

A graph in terms of x / R looks as follows: $\quad B=\frac{\mu_{0} Q \omega}{4 \pi R} \frac{1}{\left[1+(x / R)^{2}\right]^{3 / 2}}$

Notice that for values of $\mathrm{x} \ll \mathrm{R}$ we can approximate the value of B to:
$B \approx \frac{\mu_{0} Q \omega}{4 \pi R}\left[1-\frac{3 x^{2}}{2 R^{2}}\right]$, which is a parabolic approximation.
And for values of $x \gg \mathrm{R}$ we can approximate the value of B to:
$B=\frac{\mu_{0} Q \omega R^{2}}{4 \pi x^{3}}$, which is an inverse cubic approximation.

Problem 2.- Find the magnetic field at point P due to the disk of radius R, uniformly charged with charge Q rotating with angular frequency of ω as shown in the figure.

Solution: In problems like this, we want to divide the object (the disk) into simpler figures, like rings. Since we already have a solution for a ring of charge Q rotating with angular velocity ω we write the same equation in terms of a differential of charge:

$$
\mathrm{dB}=\frac{\mu_{\circ}}{4 \pi} \frac{\mathrm{r}^{2} \omega}{\left(\mathrm{r}^{2}+\mathrm{x}^{2}\right)^{3 / 2}} \mathrm{dQ}
$$

If we consider a thin ring the differential of charge will be: $d Q=\frac{Q}{\pi R^{2}} 2 \pi r d r=\frac{Q 2 r d r}{R^{2}}$ and substituting this in the equation above, we get:

$$
\mathrm{dB}=\frac{\mu_{\circ}}{4 \pi} \frac{\mathrm{r}^{2} \omega}{\left(\mathrm{r}^{2}+\mathrm{x}^{2}\right)^{3 / 2}} \frac{\mathrm{Q} 2 \mathrm{rdr}}{\mathrm{R}^{2}}=\frac{\mu_{\circ} \omega \mathrm{Q}}{2 \pi \mathrm{R}^{2}} \frac{\mathrm{r}^{3} \mathrm{dr}}{\left(\mathrm{r}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}
$$

To integrate we have several alternatives. For example, by substitution: $r=x \tan \theta$

$$
B=\frac{\mu_{0} \omega Q}{2 \pi R^{2}} \int_{0}^{R} \frac{r^{3} d r}{\left(r^{2}+x^{2}\right)^{3 / 2}}=\frac{\mu_{0} \omega Q^{\tan ^{-1}(R / x)}}{2 \pi R^{2}} \int_{0}^{x^{3} \tan ^{3} \theta x \sec ^{2} \theta d \theta} \frac{x^{3} \sec ^{3} \theta}{\mu_{0} \omega Q x} \frac{\mu^{\tan ^{-1}(R / x)}}{2 \pi R^{2}} \int_{0} \frac{\sin ^{3} \theta d \theta}{\cos ^{2} \theta}
$$

$$
B=-\frac{\mu_{0} \omega Q x}{2 \pi R^{2}} \int_{0}^{\tan ^{-1}(R / x)} \frac{\left(1-\cos ^{2} \theta\right) d \cos \theta}{\cos ^{2} \theta}=\frac{\mu_{0} \omega Q x}{2 \pi R^{2}}\left[\frac{1}{\cos \theta}+\cos \theta\right]_{0}^{\tan ^{-1}(R / x)}
$$

$$
B=\frac{\mu_{0} \omega Q x}{2 \pi R^{2}}\left[\frac{\sqrt{x^{2}+R^{2}}}{x}+\frac{x}{\sqrt{x^{2}+R^{2}}}-2\right]
$$

