Physics II

Alternating currents

$\mathrm{V}_{\mathrm{rms}}=\frac{\mathrm{V}_{\text {peak }}}{\sqrt{2}} \quad$ rms value
$\mathrm{f}=\frac{1}{\mathrm{~T}} \quad$ frequency
$\mathrm{Z}=\frac{\mathrm{V}_{\mathrm{rms}}}{\mathrm{I}_{\mathrm{rms}}} \quad$ impedance
$\mathrm{Z}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}} \sqrt{-90^{\circ}} \quad$ impedance of a capacitor
$\mathrm { Z } _ { \mathrm { L } } = 2 \pi \mathrm { fL } \longdiv { 9 0 ^ { \circ } } \quad$ impedance of an inductance

Problem 1.- An ac voltage, whose peak value is 125 V is across a $120-\Omega$ resistor. Find the rms voltage and the average power dissipated in the resistor.

Problem 2.- The specifications of an electronic instrument indicate it needs 120 V and consumes 300 W of power. We understand that the voltage given is an rms quantity. If we can consider the instrument equivalent to a resistance, calculate the value of the resistance and the rms value of the current.

Problem 3.- The figure shows the voltage and current in an electric device. Determine the value of the impedance in magnitude and angle.

Problem 4.- The plate in the back of a certain computer scanner indicates the unit consumes 0.34 A off a 120 V line at 60 Hz . Determine
a) The peak current.
b) Peak to Peak current.
c) RMS current.
d) The current read by an ammeter connected to the device.
e) The amplitude of the current.
f) The average current.
g) The power if the phase is zero.

