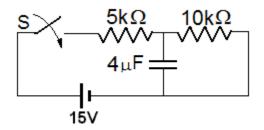
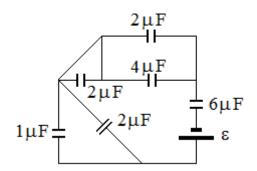

Physics II

Capacitor Circuits

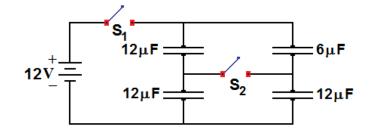


Problem 1.- A 6μ F capacitor is connected in series with a 12μ F one. What will be the energy stored if we apply 5V to the circuit?

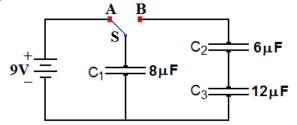

Problem 2.- Determine the capacitance of the following arrangement of capacitors and find how much energy is stored when you apply 10V between terminals A and B.

Problem 3.- Find the energy stored in the 4μ F a long time after closing the switch S.

Problem 4.- In the circuit shown below, the voltage in the 6µF capacitor is 4V.

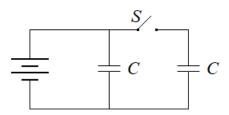


Find


- a) The capacitance of the whole circuit.
- b) The source voltage.

Problem 5.- Consider the circuit shown in the figure.

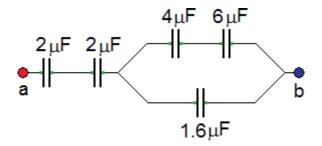
- a) With S_1 closed and S_2 open, calculate the total capacitance.
- b) In that same position, calculate the total energy stored in the circuit.
- c) With both S_1 and S_2 closed, calculate the total capacitance.
- d) In this last position, calculate the total stored energy.


Problem 6.- In the circuit shown, S is first in A and C_2 and C_3 are initially uncharged. Then, S is switched to B, connecting C_1 with C_2 and C_3 .

Answer:

- a) What is the charge in C_1 when S is in A?
- b) What is the charge in C_1 long after changing S to B?
- c) What is the final voltage in C_1 ?
- d) What is the final voltage in C_2 ?
- e) What is the final voltage in C₃?

Problem 7.- the figure shows two identical capacitors. Initially, with the switch S open, one capacitor is uncharged and the other has a charge Q_0 . The stored energy in this last capacitor is U_0 . The switch is closed and after a while the capacitors have charges Q_1 and Q_2 . The voltage and charge in each capacitor are V_1 , U_1 , V_2 y U_2 . Which of the following alternatives is incorrect?



(A)
$$Q_0 = \frac{Q_1 + Q_2}{2}$$
 (B) $Q_1 = Q_2$ (C) $V_1 = V_2$ (D) $U_1 = U_2$ (E) $U_0 = U_1 + U_2$

Problem 8.-

i) Calculate the equivalent capacitance of the circuit from the terminals a and b.

- ii) Calculate the charge in each capacitor if we connect a 16V source across a and b.
- iii) Calculate the voltage across the 4µF capacitor in case (ii).

