
Physics II

Electric Power

$$Power = VI = \frac{V^2}{R} = I^2 R$$

Problem 1.- Find the power delivered by the voltage source:

Problem 2.- Which has more resistance a 100-W light bulb or a 75-W light bulb? Explain your rationale.

Problem 3.- If two identical resistors are connected in series to a battery, does the battery have to supply more power or less power than when only one of the resistors is connected?

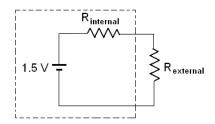
Problem 4.- If you are given two identical speakers with resistance of 4Ω each, and an amplifier with an output resistance of 8Ω . How should you connect the speakers to get the maximum power output?

(a) In series

(b) In parallel

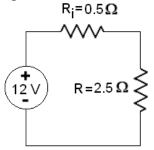
(c) Connect just one.

Problem 4a.- If you are given two identical speakers with resistance of 8Ω each, and an amplifier with an output resistance of 8Ω . How should you connect the speakers to get the maximum power output?


(a) In series

(b) In parallel

(c) Connect just one.


Problem 4b.- The output of an amplifier can be modeled as a 1.5-volt source in series with an internal resistance of $R_{internal} = 5\Omega$.

- a) What external resistance will give the maximum power transfer?
- b) How much power is dissipated in the **external** resistance then?

Problem 5.- A model of a battery is represented by an ideal 12-V voltage source in series with an internal resistance of 0.5Ω

Calculate the power delivered to a lamp whose resistance is 2.5 Ω R_i=0.5 Ω

