Physics II

Resistance

V = IR Ohm's law $R_{equivalent} = R_1 + R_2$ Equivalent for two resistors in series $R_{equivalent} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$ Equivalent for two resistors in parallel Power = VI Power in general for electric devices Power = $RI^2 = \frac{V^2}{R}$ Power in case of resistors

Problem 1.- Find the current passing through the voltage source if all the resistors shown in the circuit have the value $R = 210 \Omega$.

Problem 2.- Calculate the equivalent resistance from the point of view of the 12V voltage source.

Problem 3.- A model of a battery is represented by an ideal 12-V voltage source in series with an internal resistance of 0.5Ω

Calculate the power delivered to a lamp whose resistance is 2.5 $\boldsymbol{\Omega}$

Problem 4.- A toaster draws 8.0A when plugged into a 115V line.

(a) What is the resistance of the toaster?

(b) How much charge passes through the resistance in 3 minutes (for this calculation assume that the current is DC)

Problem 5.- What is the internal resistance of a 12-volt car battery if the terminal voltage is 9.5volts when the starter draws 125 amps?

Problem 6.- Determine the magnitude and direction (to the left or to the right) of the current through R_1 .

Problem 7.- A 12V-battery has an internal resistance of 0.05Ω Calculate the power delivered to a starter motor that can be modeled as a resistance of 0.07Ω

Problem 8.- A headlamp in a car is rated 75W at 12V.

Calculate:

- (a) its resistance and
- (b) the current when working at the nominal voltage of 12V.

Problem 9.- Is it true that a good ammeter should have very high resistance?

Problem 9a.- Is it true that a good voltmeter should have very high resistance?

Problem 10.- The fuse in a multimeter is rated 315mA. Calculate the minimum resistance that we need to connect in series with a voltage source of 5 volts if we don't want to blow the fuse. Consider the internal resistance of the instrument to be 1.5Ω when used as an ammeter.

Problem 11.- Specify units used for resistance, electric field and current.

Problem 12.- Calculate the equivalent resistance from the point of view of the 5V voltage source.

