Physics II

Resistance

$\mathrm{V}=\mathrm{IR} \quad$ Ohm's law
$\mathrm{R}_{\text {equivalent }}=\mathrm{R}_{1}+\mathrm{R}_{2} \quad$ Equivalent for two resistors in series
$\mathrm{R}_{\text {equivalent }}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}}$ Equivalent for two resistors in parallel
Power $=\mathrm{VI} \quad$ Power in general for electric devices
Power $=\mathrm{RI}^{2}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \quad$ Power in case of resistors

Problem 1.- Find the current passing through the voltage source if all the resistors shown in the circuit have the value $\mathrm{R}=210 \Omega$.

Problem 2.- Calculate the equivalent resistance from the point of view of the 12 V voltage source.

Problem 3.- A model of a battery is represented by an ideal $12-\mathrm{V}$ voltage source in series with an internal resistance of 0.5Ω
Calculate the power delivered to a lamp whose resistance is 2.5Ω

Problem 4.- A toaster draws 8.0 A when plugged into a 115 V line.
(a) What is the resistance of the toaster?
(b) How much charge passes through the resistance in 3 minutes (for this calculation assume that the current is DC)

Problem 5.- What is the internal resistance of a 12 -volt car battery if the terminal voltage is 9.5 volts when the starter draws 125 amps ?

Problem 6.- Determine the magnitude and direction (to the left or to the right) of the current through R_{1}.

Problem 7.- A 12 V -battery has an internal resistance of 0.05Ω Calculate the power delivered to a starter motor that can be modeled as a resistance of 0.07Ω

Problem 8.- A headlamp in a car is rated 75 W at 12 V .
Calculate:
(a) its resistance and
(b) the current when working at the nominal voltage of 12 V .

Problem 9.- Is it true that a good ammeter should have very high resistance?
Problem 9a.- Is it true that a good voltmeter should have very high resistance?

Problem 10.- The fuse in a multimeter is rated 315 mA . Calculate the minimum resistance that we need to connect in series with a voltage source of 5 volts if we don't want to blow the fuse. Consider the internal resistance of the instrument to be 1.5Ω when used as an ammeter.

Problem 11.- Specify units used for resistance, electric field and current.
Problem 12.- Calculate the equivalent resistance from the point of view of the 5 V voltage source.

