Physics II

Resistance

$\mathrm{V}=\mathrm{IR} \quad$ Ohm's law
$\mathrm{R}_{\text {equivalent }}=\mathrm{R}_{1}+\mathrm{R}_{2} \quad$ Equivalent for two resistors in series
$\mathrm{R}_{\text {equivalent }}=\frac{1}{\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}}$ Equivalent for two resistors in parallel
Power $=\mathrm{VI} \quad$ Power in general for electric devices
Power $=\mathrm{RI}^{2}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \quad$ Power in case of resistors

Problem 1.- Find the current passing through the voltage source if all the resistors shown in the circuit have the value $\mathrm{R}=210 \Omega$.

Solution: Notice that the two resistors on the right are in series,

so they can be replaced by an equivalent equal to
$R_{\text {equivalent }}=R+R=420$ ohm :

Now, the two resistors at the bottom are in parallel,

so the equivalent is:
$\mathrm{R}_{\text {equivalent }}=\frac{1}{\frac{1}{\mathrm{R}}+\frac{1}{420}}=\frac{1}{\frac{1}{210}+\frac{1}{420}}=140 \mathrm{ohm}$

Now, the last two resistors are in series, which means that the equivalent is $210+140=350$ ohms and the current will be:
$\mathrm{I}=\frac{72}{350}=\mathbf{0 . 2 0 6} \mathrm{A}$
Problem 2.- Calculate the equivalent resistance from the point of view of the 12 V voltage source.

Solution: Notice that the 600 -ohm resistor and the 400 -ohm one are in parallel (they share the same voltage), so they can be replaced by an equivalent of:

$$
R_{\text {equivalent }}=\frac{1}{\frac{1}{600}+\frac{1}{400}}=240 \Omega
$$

Then this resistor is in series with the 260 -ohm one, so they are equivalent to

$$
R_{\text {equivalent }}=240+260=500 \Omega
$$

Finally, this is in parallel with the other 500 -ohm resistor, so together they give:

$$
R_{\text {equivalent }}=\frac{1}{\frac{1}{500}+\frac{1}{500}}=\mathbf{2 5 0} \boldsymbol{\Omega}
$$

Problem 3.- A model of a battery is represented by an ideal $12-\mathrm{V}$ voltage source in series with an internal resistance of 0.5Ω
Calculate the power delivered to a lamp whose resistance is 2.5Ω

Solution: The current is: $I=\frac{V}{R}=\frac{12}{2.5+0.5}=4 \mathrm{~A}$
The power dissipated by the 2.5 -ohm resistor is
$P=I^{2} R=4^{2} \times 2.5=40 \mathrm{~W}$

Problem 4.- A toaster draws 8.0 A when plugged into a 115 V line.
(a) What is the resistance of the toaster?
(b) How much charge passes through the resistance in 3 minutes (for this calculation assume that the current is DC)

Solution: We can find the resistance using ohm's law:
$R=\frac{V}{I}=\frac{115}{8}=\mathbf{1 4 . 4} \boldsymbol{\Omega}$

To find the charge we know the time: $\mathrm{t}=180$ seconds and $\mathrm{I}=8 \mathrm{~A}$, so:
$\mathrm{Q}=180 \times 8=\mathbf{1 , 4 4 0} \mathbf{C}$
Problem 5.- What is the internal resistance of a 12 volt car battery if the terminal voltage is 9.5 volts when the starter draws 125 amps ?

Solution: The internal ideal voltage source is 12 volts, but the terminal voltage is only 9.5 volts because there is a drop in voltage in the internal resistance $\left(\mathrm{R}_{\mathrm{i}}\right) 12-9.5=2.5$ volts.

Since we also know the current $\mathrm{I}=125 \mathrm{amps}$ then $R_{i}=\frac{V}{I}=\frac{2.5 \mathrm{~V}}{125 \mathrm{~A}}=\mathbf{0 . 0 2} \boldsymbol{\Omega}$

Problem 6.- Determine the magnitude and direction (to the left or to the right) of the current through R_{1}.

Solution: To solve the problem we are going to follow the path highlighted:

We can assume, initially that the current goes from left to right as shown above with the red arrow. Then there will be a drop of 25 I across the 25 -ohm resistor.
The Kirchhoff equation is then:

$$
5.5-25 I-18=0 \rightarrow I=\frac{18-5.5}{-25}=-\mathbf{0 . 5} \mathrm{A}
$$

The minus sign tells us that the current goes from right to left.

Problem 7.- A 12 V -battery has an internal resistance of 0.05Ω Calculate the power delivered to a starter motor that can be modeled as a resistance of 0.07Ω

Solution: To calculate the power we can use the equation \quad Power $=\mathrm{RI}^{2}$, Where we already know the value of $\mathrm{R}=0.07 \mathrm{ohm}$.

All we need is the current. To find it, notice that the internal resistance and the external one are in series, so they together are equivalent to $0.05+0.07=0.12 \mathrm{ohm}$ and then we can use ohm's law to solve the problem:
$\mathrm{V}=\mathrm{IR} \rightarrow \mathrm{I}=\frac{12 \mathrm{~V}}{0.12 \Omega}=100 \mathrm{~A}$
So, the power is: Power $=0.07 \times 100^{2}=700$ watts.

Problem 8.- A headlamp in a car is rated 75 W at 12 V .
Calculate:
(a) its resistance and
(b) the current when working at the nominal voltage of 12 V .

Solution: Since Power $=\frac{\mathrm{V}^{2}}{\mathrm{R}}$,
Then $\mathrm{R}=\frac{\mathrm{V}^{2}}{\text { Power }}=\frac{12^{2}}{75}=\mathbf{1 . 9} \boldsymbol{\Omega}$
And: $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12}{1.9}=6.3 \mathrm{~A}$
Problem 9.- Is it true that a good ammeter should have very high resistance?
Solution: A good ammeter should have very low resistance. The instruments we use in laboratories, for example, have typically only a fraction of an ohm.

Problem 9a.- Is it true that a good voltmeter should have very high resistance?
Solution: Voltmeters have high resistance. The higher the better, because then they do not perturb the circuit they are measuring too much. Typically, they are $\sim 10 \mathrm{Mohm}$.

Problem 10.- The fuse in a multimeter is rated 315 mA . Calculate the minimum resistance that we need to connect in series with a voltage source of 5 volts if we don't want to blow the fuse. Consider the internal resistance of the instrument to be 1.5Ω when used as an ammeter.

Solution: The current should not exceed 0.315 amps and the total resistance is $\mathrm{R}+1.5 \mathrm{ohms}$ so:
$0.315 A=\frac{5 V}{R+1.5 \Omega} \rightarrow R+1.5 \Omega=\frac{5 V}{0.315 A}=15.87 \Omega \rightarrow R=14.37 \Omega$
To be safe it better be more than $\mathbf{1 5 \Omega}$
Problem 11.- Specify units used for resistance, electric field and current.
Solution: Resistance is measured in Ω, electric field is measured in N / C or V / m and current is measured in amps (A)

Problem 12.- Calculate the equivalent resistance from the point of view of the 5 V voltage source.

Solution: Notice that the 1200Ω resistor is in parallel to the 1800Ω resistor, so together are equivalent to
$\mathrm{R}=\frac{1}{\frac{1}{1800}+\frac{1}{1200}}=720 \Omega$

Notice also, that the 360Ω resistors are in parallel, which is equivalent to a 180Ω resistor.
Then the 720Ω resistor is in series with the 180Ω resistor, so together they are equivalent to $720 \Omega+180 \Omega=900 \Omega$

Finally, this 900Ω resistor is in parallel with the 600Ω, so they are equivalent to:
$\mathrm{R}_{\text {equivalent }}=\frac{1}{\frac{1}{600}+\frac{1}{900}}=\mathbf{3 6 0 \Omega}$

