Physics II

EM Wave Intensity

The intensity of an electromagnetic wave is defined as power per area, or energy per time per area.
$I=\frac{P}{A}=\frac{E}{t A}$
The intensity of an electromagnetic wave is given by:
$I=\varepsilon_{o} c E_{r m s}^{2} \quad$ Where Erms is the root mean square value of the electric field
E stands for electric field, not energy, in this equation. If you use the peak value instead of the rms value, you need to divide the equation by 2 .
$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad$ speed of light in vacuum
$\varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ Permittivity of free space

Problem 1.- A laser delivers 15 mJ to an area of $1 \mathrm{~mm}^{2}$ in a pulse that lasts 10 ns . Calculate the amplitude of the electric field.

Solution: The intensity of the laser is $I=\frac{15 \mathrm{~mJ}}{\left(1 \mathrm{~mm}^{2}\right)(10 \mathrm{~ns})}=1.5 \times 10^{12} \frac{\mathrm{~J}}{\mathrm{~m}^{2} \mathrm{~s}}$
To find the electric field recall that $\mathrm{I}=\frac{1}{2} \varepsilon_{\mathrm{o}} \mathrm{cE}^{2}$, so:

$$
\mathrm{E}=\sqrt{\frac{2 \mathrm{I}}{\varepsilon_{o} \mathrm{c}}}=\sqrt{\frac{2\left(1.5 \times 10^{12} \mathrm{~J} / \mathrm{m}^{2} \mathrm{~s}\right) \mathrm{I}}{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}}=\mathbf{3 . 3 6} \times 10^{7} \mathrm{~V} / \mathrm{m}
$$

Problem 2.- A pulsed excimer laser emits 0.135 J of energy in a pulse that lasts 15 ns and it is focused over an area of $2.25 \mathrm{~mm}^{2}$. Calculate the amplitude of its magnetic field.

Solution: The power of the laser is: $\mathrm{P}=\frac{\text { Energy }}{\text { time }}=\frac{0.135 \mathrm{~J}}{15 \times 10^{-9} \mathrm{~s}}=9 \mathrm{MW}$
The intensity is: $\mathrm{I}=\frac{\text { Power }}{\text { Area }}=\frac{9 \mathrm{MW}}{2.25 \times 10^{-6} \mathrm{~m}^{2}}=4 \times 10^{12} \mathrm{~W} / \mathrm{m}^{2}$
The electric field is:

$$
\mathrm{I}=\frac{1}{2} \varepsilon_{o} \mathrm{cE}^{2} \rightarrow \mathrm{E}=\sqrt{\frac{2 \mathrm{I}}{\varepsilon_{o} \mathrm{c}}}=\sqrt{\frac{2\left(4 \times 10^{12} \mathrm{~W} / \mathrm{m}^{2}\right)}{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}}=\mathbf{5 5 M V} / \mathbf{m}
$$

And the magnetic field:

$$
\mathrm{B}=\frac{\mathrm{E}}{\mathrm{c}}=\frac{55 \mathrm{MV} / \mathrm{m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=0.183 \mathrm{~T}
$$

Problem 3.- If the amplitude of the electric field of an EM wave is $5.5 \mathrm{~V} / \mathrm{m}$, (a) Calculate the amplitude of the magnetic field and (b) Find the average intensity (power per unit area) of the wave.

Solution:

a) The amplitude of the magnetic field is given by: $B=\frac{E}{c}=\frac{5.5 \mathrm{~V} / \mathrm{m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=\mathbf{1 . 8 3} \times 10^{-8} \mathbf{T}$
b) The average intensity is given by:
$\bar{I}=\frac{c \varepsilon_{o} E^{2}}{2}=\frac{\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)(5.5 \mathrm{~V} / \mathrm{m})^{2}}{2}=\mathbf{0 . 0 4 0} \mathrm{W} / \mathrm{m}^{2}$
Problem 4.- If the average intensity of an EM wave is $1.5 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}$, calculate the amplitudes of the electric and magnetic fields. $\left[Z_{0}=377 \Omega\right]$.

Solution: The average intensity is given by:

$$
\bar{I}=\frac{E^{2}}{2 Z_{o}} \rightarrow E=\sqrt{2 Z_{o} \bar{I}}=\sqrt{2(377 \Omega)\left(1.5 \times 10^{-3} \mathrm{~W} / \mathrm{m}^{2}\right)}=1.06 \mathrm{~V} / \mathrm{m}
$$

The amplitude of the magnetic field is given by: $B=\frac{E}{c}=\frac{1.06 \mathrm{~V} / \mathrm{m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=3.5 \times 10^{-9} \mathrm{~T}$
Problem 5.- Based on your newly acquired knowledge of electromagnetic waves, why would you say that water is heated in a microwave oven, but air not so much?

Solution: Water molecules are polar (they have a dipole moment), so they couple easily to the electric field of the electromagnetic waves. That is not the case with $\mathrm{O}_{2}, \mathrm{~N}_{2}$ and Ar which do not have dipole moments.

Problem 6.- An FM station broadcasts with a power of 1 kW in all directions. How much is the amplitude of the electric field when detected by a car radio antenna 2.3 km away from the station?

