
Physics II

Fresnel Equations

Problem 1.- One important application of Fresnel equations is in the calculation of reflected intensity. Consider the following: A light ray of intensity $I=1W/m^2$ is incident normal ($\theta_i=0$) on glass that has an index of refraction n=1.48...1.7 Calculate how much intensity is reflected.

Note: For your calculation notice that the intensity of the reflected ray is proportional to the electric field squared, so:

$$\frac{I_{reflected}}{I_{lncident}} = \left(\frac{E_{reflected}}{E_{lncident}}\right)^2$$

Also notice that since the incident angle is $\theta_i=0$ it doesn't matter if you use the TE or TM mode equations, they will give you the same value.

Solution:

The ratio of the electric field reflected, and incident is: $\frac{E_r}{E_i} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$

Since the angle of incidence is zero, the transmitted angle is also zero and the equation can be written as: $\frac{E_r}{E_i} = \frac{n_i - n_t}{n_i + n_t}$, moreover the index of refraction of air is almost 1, so the ratio $E_r = \frac{1 - n_t}{n_i + n_t}$.

is
$$\frac{E_r}{E_i} = \frac{1 - n_{glass}}{1 + n_{glass}}$$

For our calculation the intensity of the reflected ray is proportional to the electric field squared, so:

$$\frac{I_{reflected}}{I_{lncident}} = \left(\frac{1 - n_{glass}}{1 + n_{glass}}\right)^2$$

The larger the mismatch between indexes of refraction the higher the percentage of light reflected, here is a table:

	Intensity	
n-glass	Reflected	
1.48	37.5	mW/m^2
1.5	40.0	mW/m^2
1.52	42.6	mW/m^2
1.54	45.2	mW/m^2
1.56	47.9	mW/m^2
1.58	50.5	mW/m^2
1.6	53.3	mW/m^2
1.62	56.0	mW/m^2
1.64	58.8	mW/m^2
1.66	61.6	mW/m^2
1.68	64.4	mW/m^2
1.7	67.2	mW/m ²

Problem 2.- What fraction of the incident light intensity (irradiance) will be reflected in the TE mode when the angle of incidence is 45° on an air-water interface? $n_{water} = 1.33$

Solution: Let's find the angle of transmission first:

 $n_{air} \sin 45^\circ = n_{water} \sin \theta_t \rightarrow \theta_t = 32.11^\circ$

Now we use Fresnel's equations for the TE mode:

 $\frac{E_{r}}{E_{i}} = \frac{n_{i}\cos\theta_{i} - n_{t}\cos\theta_{t}}{n_{i}\cos\theta_{i} + n_{t}\cos\theta_{t}} = \frac{1\cos45^{\circ} - 1.33\cos32.11^{\circ}}{1\cos45^{\circ} + 1.33\cos32.11^{\circ}} = -0.229$

And the ratio of intensities is equal to the ratio of electric fields squared:

$$\frac{I_{r}}{I_{i}} = \left(\frac{E_{r}}{E_{i}}\right)^{2} = 0.229^{2} = 0.052$$