Physics II

Fresnel Equations

Problem 1.- One important application of Fresnel equations is in the calculation of reflected intensity. Consider the following: A light ray of intensity $\mathbf{I}=\mathbf{1 W} / \mathbf{m}^{\mathbf{2}}$ is incident normal ($\theta_{\mathrm{i}}=0$) on glass that has an index of refraction $\mathbf{n}=1.48$... 1.7
Calculate how much intensity is reflected.

Note: For your calculation notice that the intensity of the reflected ray is proportional to the electric field squared, so:
$\frac{I_{\text {reflected }}}{I_{\text {Incident }}}=\left(\frac{E_{\text {reflected }}}{E_{\text {Incident }}}\right)^{2}$
Also notice that since the incident angle is $\theta_{\mathrm{i}}=0$ it doesn't matter if you use the TE or TM mode equations, they will give you the same value.

Solution:

The ratio of the electric field reflected, and incident is: $\frac{E_{r}}{E_{i}}=\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}$
Since the angle of incidence is zero, the transmitted angle is also zero and the equation can be written as: $\frac{E_{r}}{E_{i}}=\frac{n_{i}-n_{t}}{n_{i}+n_{t}}$, moreover the index of refraction of air is almost 1 , so the ratio is $\frac{E_{r}}{E_{i}}=\frac{1-n_{\text {glass }}}{1+n_{\text {glass }}}$

For our calculation the intensity of the reflected ray is proportional to the electric field squared, so:

$$
\frac{I_{\text {reflected }}}{I_{\text {Incident }}}=\left(\frac{1-n_{\text {glass }}}{1+n_{\text {glass }}}\right)^{2}
$$

The larger the mismatch between indexes of refraction the higher the percentage of light reflected, here is a table:

n-glass	Intensity Reflected	
1.48	37.5	$\mathrm{~mW} / \mathrm{m}^{2}$
1.5	40.0	$\mathrm{~mW} / \mathrm{m}^{2}$
1.52	42.6	$\mathrm{~mW} / \mathrm{m}^{2}$
1.54	45.2	$\mathrm{~mW} / \mathrm{m}^{2}$
1.56	47.9	$\mathrm{~mW} / \mathrm{m}^{2}$
1.58	50.5	$\mathrm{~mW} / \mathrm{m}^{2}$
1.6	53.3	$\mathrm{~mW} / \mathrm{m}^{2}$
1.62	56.0	$\mathrm{~mW} / \mathrm{m}^{2}$
1.64	58.8	$\mathrm{~mW} / \mathrm{m}^{2}$
1.66	61.6	$\mathrm{~mW} / \mathrm{m}^{2}$
1.68	64.4	$\mathrm{~mW} / \mathrm{m}^{2}$
1.7	67.2	$\mathrm{~mW} / \mathrm{m}^{2}$

Problem 2.- What fraction of the incident light intensity (irradiance) will be reflected in the TE mode when the angle of incidence is 45° on an air-water interface?
$\mathrm{n}_{\text {water }}=1.33$
Solution: Let's find the angle of transmission first:
$n_{\text {air }} \sin 45^{\circ}=n_{\text {water }} \sin \theta_{t} \rightarrow \theta_{t}=32.11^{\circ}$
Now we use Fresnel's equations for the TE mode:
$\frac{E_{r}}{E_{i}}=\frac{n_{i} \cos \theta_{i}-n_{t} \cos \theta_{t}}{n_{i} \cos \theta_{i}+n_{t} \cos \theta_{t}}=\frac{1 \cos 45^{\circ}-1.33 \cos 32.11^{\circ}}{1 \cos 45^{\circ}+1.33 \cos 32.11^{\circ}}=-0.229$

And the ratio of intensities is equal to the ratio of electric fields squared:
$\frac{I_{r}}{I_{i}}=\left(\frac{E_{r}}{E_{i}}\right)^{2}=0.229^{2}=\mathbf{0 . 0 5 2}$

