Physics II

Maxwell's Equations

Problem 1.- True (T) or False (F):
() $c=\sqrt{\mu_{0} \varepsilon_{0}}$
() $\nabla \cdot \overrightarrow{\mathrm{E}}=0$ in vacuum

Solution:

(\mathbf{F}) $c=\sqrt{\mu_{0} \varepsilon_{0}}$
(\mathbf{T}) $\nabla \cdot \overrightarrow{\mathrm{E}}=0$ in vacuum

Problem 2.- True (T) or False (F):
() $\nabla \cdot \overrightarrow{\mathrm{B}}=0$ means that there are no magnetic monopoles
() Newton's second law of motion $\mathrm{F}=\mathrm{ma}$ is incorrect at high velocities

Solution:

(\mathbf{T}) $\nabla . \overrightarrow{\mathrm{B}}=0$ means that there are no magnetic monopoles
(\mathbf{T}) Newton's second law of motion $\mathrm{F}=\mathrm{ma}$ is incorrect at high velocities

Problem 3.- In what units do you measure?
(i) Electric potential (ii) Electric field (iii) Magnetic field

Solution: Electric potential is measured in volts (V), electric field in newtons per coulomb (N/C) or volts per meter $(\mathrm{V} / \mathrm{m})$ and magnetic field is measured in tesla (T).

Problem 4.- Are the wavelengths of AM radio stations shorter or longer than those of visible light?

Solution: AM radio waves have longer wavelength than those of visible light.

Problem 4a.- Are the wavelengths of TV transmissions shorter or longer than those of visible light?

Solution: TV wavelengths have longer wavelength than those of visible light.

Problem 5.- If the electric field in an electromagnetic wave traveling south oscillates east-west, in what direction is the magnetic field oscillating?
Solution: The magnetic field is perpendicular to the electric field and also perpendicular to the direction of the wave, so it will be vertical (it will oscillate up and down).

Problem 6.- How long does it take for a signal from Voyager-1 (currently $15.1 \times 10^{12} \mathrm{~m}$ from our planet in 2007) to reach the Earth?

Solution: time $=\frac{\mathrm{d}}{\mathrm{c}}=\frac{15.1 \times 10^{12} \mathrm{~m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=\mathbf{5 . 0 4} \times 1 \mathbf{1 0}^{4} \mathrm{~s}$
So, it takes about 14 hours to get a signal from the spacecraft.
Problem 7.- Based on your newly acquired knowledge of electromagnetic waves, why would you say that water is heated in a microwave oven, but air not so much?

Solution: Air molecules (mainly $\mathrm{N}_{2}, \mathrm{O}_{2}$ and Ar) do not have dipole moments, so the coupling to the waves is weak.

Problem 8.- If a radio transmitter has a vertical antenna, should a receiver antenna (rod type) be vertical or horizontal to get the best reception? Why?

Solution: The best coupling to the electromagnetic wave will be when the antenna is parallel to the electric field, so it should be a vertical rod.

Problem 9.- A typical cell phone antenna is designed so it is $1 / 4$ of the wavelength of the carrier signal. Calculate the length of the antenna for a cell phone operating at 1.9 GHz .

Solution: Using $c=\lambda f$ (fundamental equation of a wave) we get:
$\lambda=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.9 \times 10^{9} \mathrm{~Hz}}=0.1578 \mathrm{~m}$ and the antenna needs to be $\frac{0.1578 \mathrm{~m}}{4}=\mathbf{0 . 0 3 9 4} \mathbf{m}$
Or about 4 cm .
Problem 10.- One of Maxwell's laws is that $\oiint \vec{B} \cdot d \vec{S}=0$. This is also called the Magnetic Gauss Law. Which of the following graphs of magnetic lines violated this law?

Solution: We notice that in graph B there is a source of magnetic field lines, which violates that law.

