Physics II

Poynting Vector

Poynting vector $\vec{S}=\frac{\vec{E} \times \vec{B}}{\mu_{o}}$
Problem 1.- The value of the electric field of an electromagnetic wave is $\vec{E}=9 \hat{x}+12 \hat{y}$ in volts per meter, while the magnetic field is $\vec{B}=5 \times 10^{-8} \hat{z}$ in tesla. Find the direction of the velocity of this wave and its instantaneous intensity.

Solution: $\vec{S}=\frac{\vec{E} \times \vec{B}}{\mu_{o}}=\frac{1}{4 \pi \times 10^{-7}}\left|\begin{array}{ccc}\hat{x} & \hat{y} & \hat{z} \\ 9 & 12 & 0 \\ 0 & 0 & 5 \times 10^{-8}\end{array}\right|=\frac{10^{-8}}{4 \pi \times 10^{-7}}(60,-45,0)$
The magnitude of the vector is:
$|\vec{S}|=\frac{\sqrt{60^{2}+45^{2}}}{4 \pi \times 10}=0.6 \mathrm{~W} / \mathrm{m}^{2}$
Problem 2.- If a radio transmitter has a vertical antenna, should a receiver antenna (rod type) be vertical or horizontal to get the best reception? Why?

Solution: The best coupling to the electromagnetic wave will be when the antenna is parallel to the electric field, so it should be a vertical rod.

Problem 3.- When calculating the Poynting vector, what is the meaning of its magnitude and direction?

Solution: The magnitude of the Poynting vector is equal to the intensity of the electromagnetic wave and its direction is the direction of propagation.

Problem 4.- A pulsed laser emits 0.135 J of energy in a pulse that lasts 15 ns and it is focused over an area of $2.25 \mathrm{~mm}^{2}$. Calculate the amplitude of its magnetic and electric fields.

Solution: The power of the laser is: $P=\frac{E}{t}=\frac{0.135 \mathrm{~J}}{15 \times 10^{-9} \mathrm{~s}}=9 \mathrm{MW}$ (E is energy in this case)
The intensity is: $I=\frac{P}{A}=\frac{9 M W}{2.25 \times 10^{-6} \mathrm{~m}^{2}}=4 \times 10^{12} \mathrm{~W} / \mathrm{m}^{2}$

The electric field is:

$$
I=\frac{1}{2} \varepsilon_{o} c E^{2} \rightarrow E=\sqrt{\frac{2 I}{\varepsilon_{o} c}}=\sqrt{\frac{2\left(4 \times 10^{12} \mathrm{~W} / \mathrm{m}^{2}\right)}{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}}=\mathbf{5 5 M V} / \mathbf{m}
$$

And the magnetic field:

$$
B=\frac{E}{c}=\frac{55 M V / \mathrm{m}}{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}=0.183 \mathrm{~T}
$$

