Physics II

Malus's Law

Polarizer equations:
i) The intensity of unpolarized light drops one half when passing through a polarizer
ii) The intensity of polarized light drops a factor of $\cos ^{2} \theta$ when passing through a polarizer at an angle θ

Problem 1.- Two polarized films are rotated with respect to each other by 90°, so no light goes through them.
Then a sample of a crystal is put between the two films. The sample rotates the axis of polarization by 3°, without any loss of intensity. Find the fraction of the original intensity that is detected with the sample in place.

Problem 1a.- Two polarized films are rotated with respect to each other by 90 degrees, so no light goes through them.
Then a third polarizer is put in between the other two, so now a detector finds that 0.15% of the initial unpolarized light intensity goes through the three polarizers.
Find the angle of rotation between the first polarizer and the new one that was inserted. [Note: there will be two solutions]

Problem 2.- Two polarizers reduce the intensity of incident unpolarized light to only 10%. Calculate the angle between the two polarizers.

Problem 3.- Find how much intensity of a beam of un-polarized light will go through two polarizers that are rotated 60° with respect to each other.
Give your answer in percentage.
Problem 3a.- Find how much intensity of a beam of un-polarized light will go through two polarizers that are rotated 45° with respect to each other.

Problem 4.- Find how much intensity of a beam of un-polarized light will go through three polarizers, where the first and second are rotated $\theta_{1}=37^{\circ}$ with respect to each other and the second and third are rotated $\theta_{2}=30^{\circ}$ with respect to each other.

