Physics II

Malus's Law

Polarizer equations:
i) The intensity of unpolarized light drops one half when passing through a polarizer
ii) The intensity of polarized light drops a factor of $\cos ^{2} \theta$ when passing through a polarizer at an angle θ

Problem 1.- Two polarized films are rotated with respect to each other by 90°, so no light goes through them.
Then a sample of a crystal is put between the two films. The sample rotates the axis of polarization by 3°, without any loss of intensity. Find the fraction of the original intensity that is detected with the sample in place.

Solution: Let's analyze how the intensity changes after going through the polarizers and sample:
a) First polarizer: The intensity is cut in half because the polarizer only allows light of a definite polarization to go though. So, a factor of $1 / 2$.
b) Sample: there is no loss in intensity according to the problem, which is reasonable if the crystal is transparent and has an antireflective coating. However, the angle of polarization is rotated 3 degrees.
c) Second polarizer. The intensity will have to be multiplied by $\cos ^{2} \theta$, where θ is 90° $3^{\circ}=87^{\circ}$ (it was 90° without the sample, but it rotates the angle 3°).

So, the final intensity is: $\frac{1}{2} \cos ^{2}\left(90^{\circ}-3^{\circ}\right)=\mathbf{0 . 0 0 1 4}$ of the original intensity

Problem 1a.- Two polarized films are rotated with respect to each other by 90 degrees, so no light goes through them.
Then a third polarizer is put in between the other two, so now a detector finds that 0.15% of the initial unpolarized light intensity goes through the three polarizers.
Find the angle of rotation between the first polarizer and the new one that was inserted.
[Note: there will be two solutions]

Problem 2.- Two polarizers reduce the intensity of incident unpolarized light to only 10%. Calculate the angle between the two polarizers.

Solution: The first polarizer reduces the intensity by a factor of $1 / 2$ and the second polarizer by a factor of $\cos ^{2} \theta$, so the final intensity is $\frac{1}{2} \cos ^{2} \theta$ of the original value, but according to the problem this is 10%, so:
$\frac{1}{2} \cos ^{2} \theta=0.1 \rightarrow \cos ^{2} \theta=0.2 \rightarrow \cos \theta=\sqrt{0.2} \rightarrow \theta=\cos ^{-1}(\sqrt{0.2})=63.4^{\circ}$

Problem 3.- Find how much intensity of a beam of un-polarized light will go through two polarizers that are rotated 60° with respect to each other.
Give your answer in percentage.
Solution: If you start with unpolarized light of intensity I_{o}, after the first polarizer you will have polarized light of intensity $\frac{1}{2} \mathrm{I}_{0}$, the second polarizer is rotated, so there will be additional losses and the final intensity will be:
$I_{\text {FINAL }}=\frac{1}{2} I_{0}\left[\operatorname{Cos}^{2}\left(60^{\circ}\right)\right]=\frac{I_{0}}{8}=12.5 \%$ of I_{0}

Problem 3a.- Find how much intensity of a beam of un-polarized light will go through two polarizers that are rotated 45° with respect to each other.

Solution: Half of the intensity of un-polarized light will go through the first polarizer, of this intensity a fraction equal to $\cos ^{2}\left(45^{\circ}\right)=1 / 2$ will go through the second polarizer, so the final intensity will be only $1 / 4$ of the original intensity.

Problem 4.- Find how much intensity of a beam of un-polarized light will go through three polarizers, where the first and second are rotated $\theta_{1}=37^{\circ}$ with respect to each other and the second and third are rotated $\theta_{2}=30^{\circ}$ with respect to each other.

Solution: The first polarizer will reduce the intensity by a factor of 0.5 the second by a factor of $\cos ^{2} \theta_{1}$ and the third by $\cos ^{2} \theta_{2}$ where the cosine squared is Malus's law.

The final intensity for angles $\theta_{1}=37^{\circ}$ and $\theta_{2}=30^{\circ}$ is:
$0.5 \cos ^{2} 37^{\circ} \cos ^{2} 30^{\circ}=\mathbf{0 . 2 3 9}$
The final intensity for angles $\theta_{1}=18^{\circ}$ and $\theta_{2}=36^{\circ}$ is:
$0.5 \cos ^{2} 18^{\circ} \cos ^{2} 36^{\circ}=\mathbf{0 . 2 9 6}$

