Physics II

Malus's Law

Polarizer equations:

- i) The intensity of unpolarized light drops one half when passing through a polarizer
- ii) The intensity of polarized light drops a factor of $\cos^2 \theta$ when passing through a polarizer at an angle θ

Problem 1.- Two polarized films are rotated with respect to each other by 90°, so no light goes through them.

Then a sample of a crystal is put between the two films. The sample rotates the axis of polarization by 3°, without any loss of intensity. Find the fraction of the original intensity that is detected with the sample in place.

Solution: Let's analyze how the intensity changes after going through the polarizers and sample:

- a) First polarizer: The intensity is cut in half because the polarizer only allows light of a definite polarization to go though. So, a factor of ¹/₂.
- b) Sample: there is no loss in intensity according to the problem, which is reasonable if the crystal is transparent and has an antireflective coating. However, the angle of polarization is rotated 3 degrees.
- c) Second polarizer. The intensity will have to be multiplied by $\cos^2 \theta$, where θ is 90°-3°=87° (it was 90° without the sample, but it rotates the angle 3°).

So, the final intensity is: $\frac{1}{2}\cos^2(90^\circ - 3^\circ) = 0.0014$ of the original intensity

Problem 1a.- Two polarized films are rotated with respect to each other by 90 degrees, so no light goes through them.

Then a third polarizer is put in between the other two, so now a detector finds that 0.15% of the initial unpolarized light intensity goes through the three polarizers.

Find the angle of rotation between the first polarizer and the new one that was inserted.

[Note: there will be two solutions]

Problem 2.- Two polarizers reduce the intensity of incident unpolarized light to only 10%. Calculate the angle between the two polarizers.

Solution: The first polarizer reduces the intensity by a factor of $\frac{1}{2}$ and the second polarizer by a factor of $\cos^2\theta$, so the final intensity is $\frac{1}{2}\cos^2\theta$ of the original value, but according to the problem this is 10%, so:

$$\frac{1}{2}\cos^2\theta = 0.1 \rightarrow \cos^2\theta = 0.2 \rightarrow \cos\theta = \sqrt{0.2} \rightarrow \theta = \cos^{-1}(\sqrt{0.2}) = 63.4^{\circ}$$

Problem 3.- Find how much intensity of a beam of un-polarized light will go through two polarizers that are rotated 60° with respect to each other. Give your answer in percentage.

Solution: If you start with unpolarized light of intensity I_o , after the first polarizer you will have polarized light of intensity $\frac{1}{2}I_o$, the second polarizer is rotated, so there will be additional losses and the final intensity will be:

$$I_{\text{FINAL}} = \frac{1}{2} I_{\text{o}} [\cos^2(60^\circ)] = \frac{I_{\text{o}}}{8} = 12.5\% \text{ of } I_{\text{o}}$$

Problem 3a.- Find how much intensity of a beam of un-polarized light will go through two polarizers that are rotated 45° with respect to each other.

Solution: Half of the intensity of un-polarized light will go through the first polarizer, of this intensity a fraction equal to $\cos^2(45^\circ)=1/2$ will go through the second polarizer, so the final intensity will be only ¹/₄ of the original intensity.

Problem 4.- Find how much intensity of a beam of un-polarized light will go through three polarizers, where the first and second are rotated $\theta_1=37^\circ$ with respect to each other and the second and third are rotated $\theta_2=30^\circ$ with respect to each other.

Solution: The first polarizer will reduce the intensity by a factor of 0.5 the second by a factor of $\cos^2 \theta_1$ and the third by $\cos^2 \theta_2$ where the cosine squared is Malus's law.

The final intensity for angles $\theta_1=37^\circ$ and $\theta_2=30^\circ$ is:

 $0.5\cos^2 37^\circ \cos^2 30^\circ = 0.239$

The final intensity for angles $\theta_1=18^\circ$ and $\theta_2=36^\circ$ is:

 $0.5\cos^2 18^\circ \cos^2 36^\circ = 0.296$