Physics II

Single Slit

Single slit: Dark fringes located at $\theta=\sin ^{-1}\left(\frac{n \lambda}{\text { width }}\right)$, with $\mathrm{n}=$ integer, but not zero.
Problem 1.- In an experiment you shine red light of wavelength 633 nm on a slit, generating a central diffraction peak of $2 \theta=4.2^{\circ} \mathrm{How}$ wide is the slit?

Problem 1a.- A thin rectangular aperture is illuminated with a He-Ne laser (like you did in the lab) and it is observed that the first dark fringe happens at an angle of 3.55° from the center. Calculate the width of the aperture knowing that the wavelength of the laser is 632.8 nm .

Problem 1b.- In an experiment you shine red light of wavelength 633 nm on a single hair. The diffraction pattern looks as if it were a single slit (Babinet's theorem) and the central peak subtends a total angle of $\alpha=8.4^{\circ}$ How thick is the hair?

Problem 2.- A diffraction grating is used to diffract the light emitted by a flame spectrometer and detect sodium (wavelength of 589 nm). At what angle should we set the detector if the line density of the grating is 20,000 lines per inch? [1 inch $=0.0254 \mathrm{~m}$].

Problem 3.- What happens to the interference pattern of a double slit when you reduce the distance between the slits?

Problem 4.- Sketch the intensity of light after passing through a single slit. D is the width of the slit, the light wavelength is λ, and $\sin (\theta)$ is the sine of the deflected angle.

