Physics II

Single Slit

Single slit: Dark fringes located at $\theta=\sin ^{-1}\left(\frac{n \lambda}{\text { width }}\right)$, with $\mathrm{n}=$ integer, but not zero.
Problem 1.- In an experiment you shine red light of wavelength 633 nm on a slit, generating a central diffraction peak of $2 \theta=4.2^{\circ} \mathrm{How}$ wide is the slit?

Solution: The first dark fringe in the diffraction pattern happens when $\lambda=D \sin \theta$, so:
$D=\frac{\lambda}{\sin \theta}=\frac{633 \mathrm{~nm}}{\sin 2.1^{\circ}}=17 \mu \mathrm{~m}$
Problem 1a.- A thin rectangular aperture is illuminated with a He-Ne laser (like you did in the lab) and it is observed that the first dark fringe happens at an angle of 3.55° from the center. Calculate the width of the aperture knowing that the wavelength of the laser is 632.8 nm .

Solution: Since: $\lambda=W \sin \theta \rightarrow W=\frac{\lambda}{\sin \theta}=\frac{632.8 \times 10^{-9} \mathrm{~m}}{\sin 3.55^{\circ}}=\mathbf{1 0 . 2} \boldsymbol{\mu \mathrm { m }}$
Problem 1b.- In an experiment you shine red light of wavelength 633 nm on a single hair. The diffraction pattern looks as if it were a single slit (Babinet's theorem) and the central peak subtends a total angle of $\alpha=8.4^{\circ}$ How thick is the hair?

Problem 2.- A diffraction grating is used to diffract the light emitted by a flame spectrometer and detect sodium (wavelength of 589 nm). At what angle should we set the detector if the line density of the grating is 20,000 lines per inch? [1 inch $=0.0254 \mathrm{~m}$].

Solution: The equation for the first diffraction fringe is $\lambda=d \sin \theta$, so the angle is $\theta=\sin ^{-1}\left(\frac{\lambda}{d}\right)$ The distance between lines is: $d=\frac{0.0254 \mathrm{~m}}{20,000}=1.27 \times 10^{-6} \mathrm{~m}$
So the angle is: $\theta=\sin ^{-1}\left(\frac{589 \times 10^{-9}}{1.27 \times 10^{-6}}\right)=\mathbf{2 7 . 6}^{\circ}$

Problem 3.- What happens to the interference pattern of a double slit when you reduce the distance between the slits?

Solution: The angle between the central maximum and the first bright fringe in a double slit interference pattern is given by:

$$
\sin (\theta)=\frac{\lambda}{d}
$$

So, if the distance d is reduced, the angle will be larger, spreading the pattern.
Problem 4.- Sketch the intensity of light after passing through a single slit. D is the width of the slit, the light wavelength is λ and $\sin (\theta)$ is the sine of the deflected angle.

Solution:

