Physics II

Snell's Law

Snell's Law $\quad n_{i} \sin \theta_{i}=n_{r} \sin \theta_{r}$

Problem 1.- You point a laser beam to the surface of a fish tank as shown in the figure. Find the angle β at which the beam exits through the side of the tank (you can ignore the effect of the glass wall). The index of refraction of water is 1.33

Problem 1a.- You point a laser beam to the surface of a fish tank as shown in the figure. Find the maximum angle Φ so the beam is totally internally reflected at the water-surface interface. You can ignore the effect of the glass wall.
The index of refraction of water is 1.33

Problem 2.- A triangular prism made of glass (index of refraction $\mathrm{n}=1.5$) is shown in the following figures together with the trajectory of a light ray. Indicate which figure corresponds to the correct trajectory considering refraction.
Justify your answer with a very short rationale.

Problem 3.- An experiment with light rays shows the following trajectory through a rectangular glass. Find the index of refraction of the glass.

Problem 4.- The figure shows the actual position of a fish in a tank. Indicate the approximate position of the fish image as seen by the eye in the following figure:

Problem 5.- For fiber optics to reflect light inside the medium, the angle of incidence on the glass-sheath interface (shown in the figure as Φ) must be greater than 50°. Based on this, calculate the maximum angle θ for incident light that will be reflected internally.
Index of refraction of glass $=1.54$

Problem 6.- You point a laser beam to the surface of a swimming pool, making an angle of 45° with respect to the vertical. What angle does the beam make inside the water with respect to the vertical?

Problem 6a.- A laser beam coming from a submarine exits the water at an angle of 33° to the vertical. What is the angle of incidence of the beam when it hits the air-water interface?
$\mathrm{n}_{\text {water }}=1.33$

Problem 7.- In the following geometry, find the path that gives the shortest time to get from A to B if the speed in region 1 is $v_{1}=1 \mathrm{~m} / \mathrm{s}$ and the speed in region 2 is $\mathrm{v}_{2}=2 \mathrm{~m} / \mathrm{s}$.

Problem 8.- Determine the time it takes for a beam of light to get from A to B.

Problem 9.- You point an ArF excimer laser (wavelength 193 nm in air) to the surface of a UV window with index of refraction 1.48 at an angle of incidence of 45°. Calculate the angle of refraction $\left(\theta_{\mathrm{r}}\right)$.

