Physics II

Special Relativity

$$\beta = \frac{v}{c}$$
, where $c = 3 \times 10^8 m/s$
 $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$

Length contraction $L = \frac{L_o}{\gamma}$, where L_o is the proper length, measured at rest. Time dilation $T = \gamma T_o$, where T_o is the proper time, measured at rest.

Problem 1.- A certain unstable particle travels at a speed of $v = 2.4 \times 10^8 m/s$. At this speed the average lifetime of the particle is 2.7µs. What is the lifetime at rest?

Problem 2.- A particle has a lifetime of 1ns in its own rest frame, but it covers 0.6m (in average) in the laboratory before decaying. How fast is it moving?

Problem 2a.- A particle has a lifetime of 1ns in its own rest frame, but it covers 0.3m (in average) in the laboratory before decaying. How fast is it moving?

a) v = c
b) v = 0.81c
c) v = 0.71c
d) v = 0.61c
e) v = 0.51c

Problem 3.- If v=0.6c, how much is γ ?

- a) 1.20
- b) 1.25
- c) 1.58
- d) 1.67

Problem 4.- An object has a length of 6 nm at rest, but it is moving at 60% the speed of light in the direction of its length. How long does it appear?

Problem 4a.- An object that has a length of 25 cm at rest, but it is moving at 28% the speed of light. How long does it appear?

- a) 24 cm
- b) 23 cm
- c) 22 cm
- d) 21 cm
- e) 20 inches

Problem 5.- Neutrons have a half-life at rest of 608 s. What would be their half-life in motion with v = 0.8c?

a) 365 s b) 608 s c) 1013 s d) 1216 s

Problem 6.- A nanowire of length 3nm is accelerated to a high velocity in the direction of its length. It is so fast that it seems to be only 1.8nm long. How fast is it moving?

a) v = 0.6c b) v = 0.7c c) v = 0.8c d) v = 0.9c

Problem 7.- At high speeds it becomes more difficult to accelerate an object. What is the best explanation of this phenomenon?

- a) The number of atoms in the object increases.
- b) The object acquires more mass at high speeds.
- c) Linear momentum increases beyond the classical value p=mv
- d) E=ma²
- e) E=mb²
- f) $E=mc^2$

Problem 8.- How much energy is contained in 1kg of mass at rest?

- a) 9×10^{16} joule
- b) 4.5×10^{16} joule
- c) 0 joule
- d) $9 \times 10^{16} \text{ eV}$
- e) $4.5 \times 10^{16} \text{ eV}$