Quantum Mechanics

Harmonic oscillator

Problem 1.- Sketch the eigen function of the second excited state of the harmonic oscillator and indicate in your drawing the points of maximum probability of finding the particle.

Solution: A sketch of the eigen function of to the second excited state of the harmonic oscillator:

The arrows indicate the points of maximum probability of finding the particle.
Problem 2.- The functions $|0\rangle,|1\rangle$ and $|2\rangle$ are normalized solutions of the harmonic oscillator problem with quantum numbers $n=0,1$ and 2 . Calculate the expectation value of the energy of the state:

$$
|\psi\rangle=\frac{2|0\rangle+3|1\rangle+|2\rangle}{\sqrt{14}}
$$

Solution: Recall that the Hamiltonian for the harmonic oscillator is:
$H=\hbar \omega\left(a^{+} a^{-}+1 / 2\right)$,
which applied to an eigen function $|n\rangle$ yields:
$H|n\rangle=(n+1 / 2) \hbar \omega|n\rangle$, so, the expectation value of the energy is:

$$
\begin{aligned}
& E=\langle\psi| H|\psi\rangle=\left(\frac{2\langle 0|+3\langle 1|+\langle 2|}{\sqrt{14}}\right) H\left(\frac{2|0\rangle+3|1\rangle+|2\rangle}{\sqrt{14}}\right) \\
& E=\left(\frac{2\langle 0|+3\langle 1|+\langle 2|}{\sqrt{14}}\right)\left(\frac{2(1 / 2 \omega \hbar)|0\rangle+3(3 / 2 \omega \hbar)|1\rangle+(5 / 2 \omega \hbar)|2\rangle}{\sqrt{14}}\right)
\end{aligned}
$$

The eigen functions are orthogonal to each other, so only same functions will produce nonzero internal products:
$E=\frac{4(1 / 2 \omega \hbar)\langle 0 \| 0\rangle+9(3 / 2 \omega \hbar)\langle 1 \| 1\rangle+(5 / 2 \omega \hbar)\langle 2 \| 2\rangle}{14}$
Since the eigen functions are already normalized, the internal products are equal to 1 :
$E=\frac{4(1 / 2 \omega \hbar)+9(3 / 2 \omega \hbar)+(5 / 2 \omega \hbar)}{14}=\frac{9}{7} \hbar \omega$

Problem 3.- What is the expectation value of the energy E, for a particle in the harmonic oscillator potential with wave function:
$\psi=0.6|0\rangle+0.8|1\rangle$

Solution: Recall that the expectation value is equal to the sum of the eigenvalues multiplied by their probabilities:
$\langle E\rangle=0.6^{2}(1 / 2 \hbar \omega)+0.8^{2}(3 / 2 \hbar \omega)=1.14 \hbar \omega$
Problem 4.- What is the expectation value of x^{2} for a particle in the harmonic oscillator potential with the wave function $\psi=0.6|0\rangle+0.8|1\rangle$?

Solution: Let us find the expectation value of x^{2} :
$\left\langle x^{2}\right\rangle=(0.6\langle 0|+0.8\langle 1|) x^{2}(0.6|0\rangle+0.8|1\rangle)=\frac{\hbar}{2 m \omega}(0.6\langle 0|+0.8\langle 1|)\left(a^{+}+a^{-}\right)^{2}(0.6|0\rangle+0.8|1\rangle)$

We consider only the terms $a^{+} a^{-}$and $a^{-} a^{+}$in the expectation value. The other terms will yield $|2\rangle,|3\rangle$ and zero, which do not contribute.
$\left\langle x^{2}\right\rangle=\frac{\hbar}{2 m \omega}\left(0.6^{2}(1)+0.8^{2}(3)\right)=1.14 \frac{\hbar}{m \omega}$
Problem 5.- What is the expectation value of p^{2} in a harmonic oscillator with wave function $|3\rangle$?
Solution: Writing p as an operator:
$p=i \sqrt{\frac{m \omega \hbar}{2}}\left(a^{+}-a^{-}\right)$
The expectation value will be:
$\langle 3|\left(i \sqrt{\frac{m \omega \hbar}{2}}\left(a^{+}-a^{-}\right)\right)^{2}|3\rangle=-\frac{m \omega \hbar}{2}\langle 3|\left(a^{+}-a^{-}\right)^{2}|3\rangle=-\frac{m \omega \hbar}{2}\left\langle 3 \mid\left(a^{+^{2}}-a^{+} a^{-}-a^{-} a^{+}+a^{-2}\right) 3\right\rangle$

Using the rules: $a^{+}|n\rangle=\sqrt{n+1}|n+1\rangle$ and $a^{-}|n\rangle=\sqrt{n}|n-1\rangle$ we get:
$=\frac{m \omega \hbar}{2}\left\langle 3 \mid\left(a^{+} a^{-}+a^{-} a^{+}\right) 3\right\rangle=\frac{7 m \omega \hbar}{2}$

