Quantum Mechanics

Angular momentum

Problem 1.- What is the angle between the z-axis and the spin of an electron in the "spin up" state?

Solution: A diagram helps to solve this problem

Notice that the magnitude of the spin is: $\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)} \hbar$ and the projection on the z-axis is only $\frac{1}{2} \hbar$, so the cosine of the angle is:
$\cos \theta=\frac{\frac{1}{2} \hbar}{\sqrt{\frac{1}{2}\left(\frac{1}{2}+1\right)}}=\frac{1}{\sqrt{3}} \rightarrow \theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\mathbf{5 4 . 7 ^ { \circ }}$
Problem 2.- A particle is prepared in the state: $\psi=\frac{2 Y_{2}^{1}+Y_{3}^{2}+Y_{3}^{0}}{\sqrt{6}}$. An experiment to measure angular momentum yields $l=2$. If we measure the magnetic quantum number immediately after, what value do you expect to get?

Solution: When the angular momentum is measured, the wave function will "collapse" to Y_{2}^{1}, which has magnetic quantum number $\mathbf{m}=\mathbf{1}$.

Problem 3.- What are the places where the probability of finding the electron of the hydrogen atom with quantum numbers $\mathrm{n}=3, l=0$ and $\mathrm{m}=0$ vanishes?

Solution: The angular wave function with $l=0$ and $\mathrm{m}=0$ is a constant, so the only places where the probability vanishes are where the radial wave function is zero.
This happens when $1-\frac{2}{3} \frac{r}{a}+\frac{2}{27}\left(\frac{r}{a}\right)^{2}=0$
The two solutions are $\mathbf{r}=7.1 \mathrm{a}$ and $\mathbf{r}=1.9 \mathrm{a}$

Problem 4.- What is the angular eigen function that has L^{2} eigenvalue of $12 \hbar^{2}$ and L_{z} eigenvalue of $-2 \hbar$?

Solution: If L^{2} is $12 \hbar^{2}$ it means that $l=3$. The fact that L_{z} is $-2 \hbar$ means that $\mathrm{m}=-2$, so the angular wave function is Y_{3}^{-2}

Problem 4a.- What is the angular eigen function that has L^{2} eigenvalue of $30 \hbar^{2}$ and L_{z} eigenvalue of $-3 \hbar$?

Solution: Notice that $l(l+1)=30=5 \times 6$, so the value of l is 5 . The value of m is -3 , which specifies the spherical harmonic Y_{5}^{-3}

