Quantum Mechanics

Spin

Problem 1.-Find the value of "A" that normalizes the spinor χ and calculate the probability of measuring S_{Z} to be $+\hbar / 2$.
$\chi=A\binom{1+\mathrm{i}}{1-\mathrm{i}}$
Solution: To normalize the spinor, we need to make sure that the sum of the squares of the absolute value of the coefficients is equal to one:
$\chi=\mathrm{A}\binom{1+\mathrm{i}}{1-\mathrm{i}} \quad|A(1-i)|^{2}+|A(1+i)|^{2}=1 \rightarrow|A|^{2}(1+1+1+1)=1 \rightarrow|A|^{2}=\frac{1}{4}$
"A" can be a complex number, so in general it could be $\frac{1}{2} e^{i \alpha}$ for any real α, but we can choose to make $\mathrm{A}=\frac{1}{2}$

Notice that we can write the spinor as a linear combination of the eigen functions of S_{z} :
$\chi=A\binom{1-i}{1+i}=A(1-i)\binom{1}{0}+A(1+i)\binom{0}{1}$
The only possible results are the eigenvalues $\hbar / 2$ and $-\hbar / 2$, so the probabilities are the coefficients squared:

Probability of $S_{Z}=\hbar / 2=|A(1-i)|^{2}=\frac{1+1}{4}=1 / 2$
Problem 2.- In the spinor from the previous problem, what is the probability that a measurement of S_{X} will yield $+\hbar / 2$?

Solution: We need to write the spinor as a linear combination of eigenfunctions of S_{x} :
$\chi=\binom{(1-i) / 2}{(1+i) / 2}=X\binom{1 / \sqrt{2}}{1 / \sqrt{2}}+Y\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}$
This gives us two simultaneous linear equations:

$$
\begin{aligned}
& (1-i) / 2=X / \sqrt{2}+Y / \sqrt{2} \\
& (1+i) / 2=X / \sqrt{2}-Y / \sqrt{2}
\end{aligned}
$$

We can add the equations to get X :

$$
(1-i) / 2+(1+i) / 2=X \sqrt{2} \rightarrow X=\frac{2}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

The square of the absolute value of X will be the probability of getting $S_{X}=\hbar / 2$:
Probability of $S_{X}=\hbar / 2=\frac{1}{2}$
Problem 3.- What is the angle between the " z " axis and the spin of an electron in the state $\binom{1}{0}$?
Solution: The projection of the vector on the z-axis is $\hbar / 2$ and the magnitude of the vector is $\sqrt{S^{2}}=\sqrt{\frac{\hbar}{2}\left(\frac{3 \hbar}{2}\right)}=\frac{\sqrt{3}}{2} \hbar$ so the angle is:
$\theta=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\mathbf{5 4 . 7}^{\circ}$
Problem 3a.- What is the angle between the " z " axis and the spin of an iron cluster in the state $\left|\mathrm{S}, \mathrm{S}_{\mathrm{z}}\right\rangle=|100,100\rangle$ Ignore any orbital angular momentum.

Solution: The projection of S on the z axis is $100 \hbar$ and the absolute value of the spin is $\sqrt{S^{2}}=\sqrt{100(101) \hbar^{2}}$ so:
$\theta=\cos ^{-1}\left(\frac{100}{\sqrt{100(101)}}\right)=5.7^{\circ}$
Problem 4.- A Stern-Gerlach apparatus measures S_{Z} of an electron to be $+\hbar / 2$. What will be the outcome of a measurement of S_{X} made just after that?

Solution: Since the value of S_{Z} is known, there is no information about S_{X}.
A measurement of S_{X} will give $\hbar / 2$ with 50% probability and $-\hbar / 2$ with 50% probability.
Problem 5.- In the spinor χ given, find the constant A and calculate the probability that a measurement of S_{X} will yield $+\hbar / 2$.
$\chi=\mathrm{A}\binom{3+4 \mathrm{i}}{12 \mathrm{i}}$
Solution: First, we make sure that the wave function is normalized:
$1=\chi^{+} \chi=|\mathrm{A}|^{2}\left(\begin{array}{ll}3-4 \mathrm{i} & -12 i\end{array}\right)\binom{3+4 \mathrm{i}}{12 \mathrm{i}}=|\mathrm{A}|^{2}(9+16+144)=169|\mathrm{~A}|^{2}$

So, $A=1 / 13$.
We understand that A can be any complex number with absolute value $1 / 13$, but $1 / 13$ is the simplest answer here.

To find the probability that a measurement of S_{X} will yield $+\hbar / 2$ we write the spinor as a linear combination of eigenvectors of the operator S_{x} :
$A\binom{3+4 \mathrm{i}}{12 \mathrm{i}}=a\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}+b\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}} \rightarrow a=\frac{A(3+16 i)}{\sqrt{2}}$
The probability is $|a|^{2}=\left|\frac{A(3+16 i)}{\sqrt{2}}\right|^{2}=\frac{1}{169} \frac{1}{2}(9+256)=\frac{265}{338}$

Problem 6.-

a) Normalize the spinor:

$$
\chi=A\binom{1-2 i}{2}
$$

b) Find the probabilities of measurements of S_{z}.
c) Find the probabilities of measurements of S_{x}.

Solution:

a) To normalize the spinor, we need to make sure that the sum of the squares of the absolute value of the coefficients is equal to one:
$\chi=A\binom{1-2 i}{2} \quad|A(1-2 i)|^{2}+|2 A|^{2}=1 \rightarrow|A|^{2}(1+4+4)=1 \rightarrow|A|^{2}=\frac{1}{9}$
"A" can be a complex number, so in general it could be $\frac{1}{3} e^{i \alpha}$ for any real α, but we can choose to make $\mathrm{A}=\frac{1}{3}$
b) Notice that the spinor is already written as a linear combination of the eigen functions of S_{z} :
$\chi=A\binom{1-2 i}{2}=A(1-2 i)\binom{1}{0}+2 A\binom{0}{1}$
The only possible results are the eigenvalues $\hbar / 2$ and $-\hbar / 2$. The probabilities are the coefficients squared:

Probability of $\hbar / 2=|A(1-2 i)|^{2}=\frac{1+4}{9}=5 / 9$
Probability of $-\hbar / 2=|2 A|^{2}=\frac{4}{9}=4 / 9$
The expectation value is calculated as usual, by multiplying the probabilities by the eigen values:

$$
\left\langle S_{Z}\right\rangle=(\hbar / 2)(5 / 9)+(-\hbar / 2)(4 / 9)=\frac{\hbar}{18}
$$

c) We need to write the spinor as a linear combination of eigen functions of S_{x} :

$$
\chi=\binom{(1-2 i) / 3}{2 / 3}=X\binom{1 / \sqrt{2}}{1 / \sqrt{2}}+Y\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}
$$

This gives us two simultaneous linear equations:

$$
\begin{aligned}
& (1-2 i) / 3=X / \sqrt{2}+Y / \sqrt{2} \\
& 2 / 3=X / \sqrt{2}-Y / \sqrt{2}
\end{aligned}
$$

We can add them to get X :

$$
(1-2 i) / 3+2 / 3=X \sqrt{2} \rightarrow X=\frac{3-2 i}{3 \sqrt{2}}
$$

The square of the absolute value of X will be the probability of getting $\mathrm{Sx}=\hbar / 2$:
Probability of $\hbar / 2=\left|\frac{3-2 i}{3 \sqrt{2}}\right|^{2}=\frac{9+4}{18}=13 / 18$
The probability of getting the other eigenvalue will be $1-13 / 18=5 / 18$.
The expectation value: $\left\langle S_{X}\right\rangle=(\hbar / 2)(13 / 18)+(-\hbar / 2)(5 / 18)=\frac{2 \hbar}{9}$

