Quantum Mechanics

Bosons and Fermions

Problem 1.- Classify the following neutral atoms as fermions or bosons:
${ }_{7}^{14} \mathrm{~N}$ \qquad
\qquad
${ }_{102}^{259} \mathrm{No}$ \qquad

Solution: We need to count the number of fermions (electrons, protons and neutrons) if the number is even, the neutral atom is a boson, otherwise a fermion:

${ }_{7}^{14} \mathrm{~N}$	Fermion
${ }^{23} \mathrm{Na}$	Boson
${ }_{11} \mathrm{Na}$	
${ }^{93} \mathrm{Nb}$	Boson
${ }_{41}^{259} \mathrm{No}$	Fermion

Problem 2.- Write down a symmetric wave function of three identical bosons, using the wave functions ψ_{1}, ψ_{2} and ψ_{3}.

Solution: If we sum all the possible combinations of the three wave functions we will get a symmetric wave function with parity +1 :
$\psi_{1}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{2}\right) \psi_{3}\left(\vec{r}_{3}\right)+\psi_{1}\left(\vec{r}_{1}\right) \psi_{3}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{3}\right)+\psi_{2}\left(\vec{r}_{1}\right) \psi_{1}\left(\vec{r}_{2}\right) \psi_{3}\left(\vec{r}_{3}\right)+\psi_{2}\left(\vec{r}_{1}\right) \psi_{3}\left(\vec{r}_{2}\right) \psi_{1}\left(\vec{r}_{3}\right)+$ $\psi_{3}\left(\vec{r}_{1}\right) \psi_{1}\left(\vec{r}_{2}\right) \psi_{2}\left(\vec{r}_{3}\right)+\psi_{3}\left(\vec{r}_{1}\right) \psi_{2}\left(\vec{r}_{2}\right) \psi_{1}\left(\vec{r}_{3}\right)$

To normalize the wave function, we need to divide it by $\sqrt{6}$.
Problem 3.- Write down an antisymmetric wave function of three identical fermions, using the wave functions ψ_{1}, ψ_{2} and ψ_{3}.

Solution: We could generate a Slater determinant and write down an antisymmetric wave function:

$$
\left|\begin{array}{lll}
\psi_{1}\left(\vec{r}_{1}\right) & \psi_{1}\left(\vec{r}_{2}\right) & \psi_{1}\left(\vec{r}_{3}\right) \\
\psi_{2}\left(\vec{r}_{1}\right) & \psi_{2}\left(\vec{r}_{2}\right) & \psi_{2}\left(\vec{r}_{3}\right) \\
\psi_{3}\left(\vec{r}_{1}\right) & \psi_{3}\left(\vec{r}_{2}\right) & \psi_{3}\left(\vec{r}_{3}\right)
\end{array}\right|
$$

To normalize the wave function, we need to divide it by $\sqrt{6}$.
Problem 4.- A system containing two identical particles is described by a wave function of the form:
$\psi=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)-\psi_{a}\left(x_{2}\right) \psi_{b}\left(x_{1}\right)\right]$
Where x_{1} and x_{2} represent the spatial coordinates of the particles and a and b represent all the quantum numbers, including spin, of the states that they occupy. The particles might be:
(A) Deuterons.
(B) Neutral sodium atoms ${ }_{11}^{23} \mathrm{Na}$
(C) Alpha particles
(D) Neutral nitrogen atoms ${ }_{7}^{14} \mathrm{~N}$
(E) Neutral rubidium- 85 isotopes ${ }_{37}^{85} \mathrm{Rb}$

Solution: The wave function given has parity -1 , that is, the wave function changes sign when two particles are swapped:
$\psi=\frac{1}{\sqrt{2}}\left[\psi_{a}\left(x_{1}\right) \psi_{b}\left(x_{2}\right)-\psi_{a}\left(x_{2}\right) \psi_{b}\left(x_{1}\right)\right]$
This means that it represents fermions.
The only fermions in the list are neutral nitrogen atoms ${ }_{7}^{14} N$.
Answer: D

