Quantum Mechanics

Bosons and Fermions

Problem 1.- Classify the following neutral atoms as fermions or bosons:

$^{14}_{7}\mathrm{N}$	
²³ ₁₁ Na	
93 ₄₁ Nb	
$_{102}^{259}$ No	

Solution: We need to count the number of fermions (electrons, protons and neutrons) if the number is even, the neutral atom is a boson, otherwise a fermion:

$^{14}_{7}$ N	Fermion
$^{23}_{11}$ Na	Boson
$^{93}_{41}{\rm Nb}$	Boson
²⁵⁹ ₁₀₂ No	Fermion

Problem 2.- Write down a symmetric wave function of three identical bosons, using the wave functions ψ_1 , ψ_2 and ψ_3 .

Solution: If we sum all the possible combinations of the three wave functions we will get a symmetric wave function with parity +1:

$$\psi_{1}(\vec{r_{1}})\psi_{2}(\vec{r_{2}})\psi_{3}(\vec{r_{3}}) + \psi_{1}(\vec{r_{1}})\psi_{3}(\vec{r_{2}})\psi_{2}(\vec{r_{3}}) + \psi_{2}(\vec{r_{1}})\psi_{1}(\vec{r_{2}})\psi_{3}(\vec{r_{3}}) + \psi_{2}(\vec{r_{1}})\psi_{3}(\vec{r_{2}})\psi_{1}(\vec{r_{3}}) + \psi_{3}(\vec{r_{1}})\psi_{1}(\vec{r_{2}})\psi_{2}(\vec{r_{3}}) + \psi_{3}(\vec{r_{1}})\psi_{2}(\vec{r_{2}})\psi_{1}(\vec{r_{3}})$$

To normalize the wave function, we need to divide it by $\sqrt{6}$.

Problem 3.- Write down an antisymmetric wave function of three identical fermions, using the wave functions ψ_1 , ψ_2 and ψ_3 .

Solution: We could generate a Slater determinant and write down an antisymmetric wave function:

$$\begin{vmatrix} \psi_{1}(\vec{r_{1}}) & \psi_{1}(\vec{r_{2}}) & \psi_{1}(\vec{r_{3}}) \\ \psi_{2}(\vec{r_{1}}) & \psi_{2}(\vec{r_{2}}) & \psi_{2}(\vec{r_{3}}) \\ \psi_{3}(\vec{r_{1}}) & \psi_{3}(\vec{r_{2}}) & \psi_{3}(\vec{r_{3}}) \end{vmatrix}$$

To normalize the wave function, we need to divide it by $\sqrt{6}$.

Problem 4.- A system containing two identical particles is described by a wave function of the form:

$$\psi = \frac{1}{\sqrt{2}} [\psi_a(x_1)\psi_b(x_2) - \psi_a(x_2)\psi_b(x_1)]$$

Where x_1 and x_2 represent the spatial coordinates of the particles and a and b represent all the quantum numbers, including spin, of the states that they occupy. The particles might be:

- (A) Deuterons.
- (B) Neutral sodium atoms ²³₁₁Na
- (C) Alpha particles
- (D) Neutral nitrogen atoms ${}^{14}_{7}N$
- (E) Neutral rubidium-85 isotopes ${}^{85}_{37}Rb$

Solution: The wave function given has parity -1, that is, the wave function changes sign when two particles are swapped:

$$\psi = \frac{1}{\sqrt{2}} [\psi_a(x_1)\psi_b(x_2) - \psi_a(x_2)\psi_b(x_1)]$$

This means that it represents fermions.

The only fermions in the list are neutral nitrogen atoms ${}^{14}_{7}N$.

Answer: D