
Quantum Mechanics 

Identical particles 
 

Problem 1.- Find the expectation value 2

21 )( xx −  for two particles in the  simple harmonic 

oscillator potential in states 0  and 1  in the cases  

a) If the particles are distinguishable. 

b) If they are identical bosons. 

c) If they are identical fermions. 

 

Solution: 

Let’s call n the eigen function of the harmonic oscillator in one dimension with energy eigen 

value ω�)2/1( +n . The quantum number n is a non-negative integer.  

 

To calculate the various expectation values, we will need: 
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To apply the operator, recall that: 
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The expectation value of the square of x can be found using this operator: 
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Notice that only the term in the middle gives us a nonzero result, which is equal to: 
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In our problem: 
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We also know, just from symmetry that the expectation value of x vanishes for a harmonic 

oscillator. 

 

To get the “cross integral” 10 x  we again use the operator above: 
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a) Distinguishable particles:  
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b) Identical Bosons:  
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b) Identical Fermions in the triplet state:  
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Problem 2.- Consider that two particles interact through a potential that only depends on the 

vector  
21 rrr
���

−=  and show that the Schrodinger equation can be separated in two equations, one 

for r
�

 and the other for the center of mass vector 
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Solution: We write the kinetic energy in terms of the reduced mass, 
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Where  )()( rR
rR

ψψ=Ψ     
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Dividing by )()( rR
rR

ψψ=Ψ : 

 

ErV
r

r

R

R

mm
r

rr

R

RR =+
∇

−
∇

+
− )(

)(

)(

2)(

)(

)(2

222

21

2

ψ

ψ

µψ

ψ ��
 

R

R

RR
E

R

R

mm
=

∇

+
−

)(

)(

)(2

2

21

2

ψ

ψ�
         

  
r

r

rr
ErV

r

r
=+

∇
− )(

)(

)(

2

22

ψ

ψ

µ

�
   

 

and  
Rr

EEE +=  

 

The two separate equations are: 
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