Quantum Mechanics

Particle in a box

The time-independent Schrödinger equation in one dimension is:
$-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi+V(x) \psi=E \psi$
Where the full wave function is $\Psi(t, x)=\psi(x) e^{-i \frac{E}{\hbar} t}$

One of the simplest potentials that we can have is a box, defined as:
$V(x)=\left\{\begin{array}{l}0 \text { if } 0<x<a \\ \infty \text { otherwise }\end{array}\right.$

In that case the solutions are:
$\psi(x)=\sqrt{\frac{2}{a}} \sin \left(n \frac{\pi}{a} x\right)$

Where n can be any positive integer. The kinetic energy for this state is:
$E=n^{2} \frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$
You can also write this energy as $E=n^{2} \frac{h^{2}}{8 m a^{2}}$

