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Abstract 

We examine the electrical polarizability of a few electrons confined in a one dimensional 

parabolic potential in the presence of an effective pairing interaction. We use 

Richardson’s model to first determine the energies and wavefunctions, and then use 

perturbation theory to treat the effect of the electric field. In the cases studied, it is found 

that the polarizability decreases with respect to the normal state. 
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Introduction 

The hallmark of superconductivity is zero electrical resistivity [1], but there are other 

effects that occur in superconducting samples, such as the expulsion of magnetic fields 

(The Meissner effect [2]), the changes in the electronic heat capacity and heat 

conductivity below the transition temperature and the presence of an energy gap at the 

Fermi level. There are counterexamples to all these manifestations of superconductivity, 

as pointed out recently by Leon Cooper [3], so a more modern definition of 

superconductivity focuses on the associated phase transition [4]. We understand that a 

pairing interaction affects electrons that are close to the Fermi Surface producing a 

macroscopic effect and forming a new wavefunction. In light of this understanding, it is 

interesting to investigate what happens when the size of a superconducting sample 

becomes so small that it stops being macroscopic. This would cause the energy levels to 

be few and discrete, and band theory would no longer describe the behavior of electrons.  

 

The critical size for which superconductivity still exists has been deemed the most 

fundamental problem of superconducting particles [5]. Theoretically, in Anderson’s 

famous paper [6] about dirty superconductors, he suggested the criterion for the critical 

size in which superconductivity still exists is when the energy gap is comparable to the 

separation between energy levels at the Fermi surface. Experiments done at Harvard in 

the 1990s [7][8] showed that the energy gap was still present in aluminum particles of 

diameter nm5≈ , where the gap is larger than the average level spacing, for smaller 

particles it was not possible to distinguish between the level separation and the gap. 

 

A single atom cannot have zero resistivity, so superconductivity in the usual sense should 

disappear when the size of the sample gets too small, but what happens to the pairing 

interaction? At least in principle, there could be manifestations of superconductivity in 

small particles other than zero resistivity. For example, the odd-even alternation in the 

binding energy observed in nuclei has been explained by pairing interactions between 

nucleons [9]. 



Another possible manifestation might be the transition to a state that behaves like a 

ferroelectric. This was observed at Georgia Tech in 2002 [10] in clusters of niobium, 

vanadium, and tantalum, which are superconductors in the bulk. This effect is absent in 

other non superconducting metals. Other clues that point towards an explanation based on 

superconductivity are the spin decoupling observed in niobium [11], the effect of 

magnetic dopants, the enhancement of the effect with aluminum, the odd-even alternation 

that favors clusters that have even number of electrons, and the similarity in the transition 

temperatures [12].  

 

The effects observed at Georgia Tech are complex and require more than a simple model 

based on permanent dipole moments attached to the frame of the cluster [13]. According 

to our present understanding, the superconducting wavefunction behaves as a “frozen 

crust” (as Victor Weisskopf described it back in 1981 [14]), meaning that a finite energy 

is required to change the quantum state. Could this explain a ferroelectric-like response? 

This question prompted us to study the polarizability of small particles with a few 

electrons in the presence of a pairing interaction. We use Richardson’s model to first find 

the energies and wavefunctions, and then treat the electric field as a perturbation as 

explained below. We do not pretend to approach a realistic approximation, but rather to 

gain insight in how the pairing interaction might affect the electrical polarizability. 

 

Richardson’s Model 

The model was originally intended to study the pairing interaction in nuclei, but it has 

been successfully applied to small superconducting particles like the ones studied 

experimentally by the Harvard group. We are guided by the tutorial written by F. Braun 

and J. von Delft [15], and the original work published by Richardson cited therein 

especially reference [16]. 

 

In the absence of a pairing interaction the Hamiltonian we will consider is simply: 
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Here +
σic is the operator that creates an electron that occupies level i with spin σ  when 

acting on the vacuum. This Hamiltonian corresponds to only diagonal elements. Its 

solutions are anti-symmetric wavefunctions that can be expressed as Slater determinants, 

where the swapping of two electrons changes the sign of the determinant. In compact 

form, the solution can be expressed as occupation numbers, which specify whether a 

level is occupied or not. Following the review written by von Delft [17], we can use a 

cartoon representation of this wavefunction as shown in equation 2: 
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=ψ  Equation 2 

We could call this the “normal” state, where the electron-electron interaction is ignored 

and the electrons in the ground state occupy levels up to the Fermi surface. But in the 

presence of an attractive interaction between electrons the Hamiltonian has to include an 

additional term that describes the pairing interaction: 
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The second term in equation 3 is due to the attraction between electrons. It has the 

consequence of scattering pairs of electrons, reducing the energy of the system. 

 

The resulting wavefunction for the Hamiltonian of equation 3 will be a product of two 

operators acting on the vacuum. One factor contains all the single-electron creation 

operators and the other contains pair creation operators.  
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Once an energy level is occupied by a single electron it is not available for pair 

scattering, so it will not participate in the attractive interaction. In equation 4, B stands for 

the set of all levels that are blocked due to single occupancy, and U stands for the set of 

all unblocked levels available for pair scattering. The number of electron pairs is n, so the 

total number of electrons is 2n+b, where b is the number of electrons that make up the 

blocked states. The pair creation operator +

vj
b is defined as +

↓
+
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+ =

vv jjj ccb
ν

 and C is a 

numerical coefficient. We can define the wavefunction of paired electrons as 
U

ψ as 

follows: 
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Note that the paired wavefunction is invariable under an exchange of two pairs. In that 

sense, it follows Bose statistics. However, the pair creation operator is made out of two 

fermion creation operators, so ( ) 0
2

=+

vj
b . This differs from normal Bose statistics and 

must be taken into account in the solution. 

 

Richardson established that the solution could be found exactly by assuming 

wavefunctions of the form:   
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Where the energies νE satisfy the equations: 
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Thus, this model not only provides the wavefunction, but also the energy of the system 

given by the sum: 
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Proof of these results can be found in the original papers by Richardson and in an 

alternative, simpler form in the tutorial written by von Delft and Braun [15]. 

 

Solving the problem for two electrons: 

 

Following Richardson’s model [16], we assume that the single particle states are equally 

separated energy levels. We take the separation as the unit of energy, and start this ladder 

at 11 =ε . This hypothetical system could correspond to a one dimensional parabolic 

potential well, 22

2

1
xmV ω= , where the ground state has been arbitrarily set to unity. The 

unit of energy is defined as ωh . In the simplest possible case, we can assume that the 

number of energy levels is truncated at two. This is the simplest case because the third 

term in Equation 7 does not exist, so the equation becomes: 
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With only one variable, the equation can be solved numerically for every value of g, or 

by using the approach suggested by Richardson [18] by mapping the problem into a two 

dimensional electrostatic problem.  

 

Using the latter approach, the energy E represents an equilibrium position, x, of an 

infinite long rod that can only move along the x-axis with a uniform linear density of 

charge in a region of space where there are potentials of the form:   
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As an example, Figure 1 shows the potential for the case when g=0.5 and the solid arrow 

indicates the equilibrium position for the ground state. The pair can also exist in an 

excited state, which is indicated in the figure with a dashed arrow. Besides this, there is 

an excited state of a split pair, where one electron occupies the lowest level and the other 

occupies the highest one. In this case, the energy would simply be ωh3  regardless of the 

value of g, because both electrons occupy blocked states. A similar situation was 

suggested by Cooper in his seminal paper about pairing in superconductors [19] when he 

suggested that the splitting of a pair was the most likely channel for excitation. 

Plotting the ground state energy as a function of g is shown in Figure 2 as the solid line. 

And the first excited pair state as a dashed line. The split state energy is represented with 

the dotted line. 

 

The ground state wavefunction will be given by: 
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The consequence of having a pairing interaction is that the electron pair occupies higher 

energy levels to take advantage of the second term in the Hamiltonian (equation 3), and 

reduce the overall energy. 

 

Introducing an Electric Field 
 

We want to ask ourselves what would happen if we put this small system in an electric 

field. With e being the absolute value of the charge of the electron and F being the 

strength of the electric field, we consider an additional term in the Hamiltonian:  

xeFH ˆ
1 −=  Equation 12 

In this equation, x̂  is the position operator acting on all the electrons. Writing this 

expression with the usual definition of raising, 11 ++=+
nnna , and lowering, 

1−= nnna , operators becomes: 
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We need to be aware that in principle an error is introduced because the ladder is 

truncated to only two levels. For that reason, we later extend the calculations to more 

levels. 

 

We can try first order perturbation theory to calculate the shift in energy as follows: 
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However, the position operator acts on one electron at a time. When acting on the ground 

state ket it will break the pair, so the resulting wavefunction will be orthogonal to the 

ground state bra. Thus, first order perturbation theory gives a null result. 

 

We move onto second order perturbation theory: 
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Given the solution found above in Richardson’s Model we get for the summation: 
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The expression in equation 16 can be simplified to give the shift in energy: 
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Notice that the shift in energy is proportional to the electric field squared. This indicates a 

behavior that mimics a polarizability α : 
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This result is shown in figure 3, where we notice that when 0→g  the system approaches 

the normal state where ωh2=E  and then the polarizability is equal to the normal value  
22 /2 ωα me= . The normal value can be obtained directly from the Hamiltonian by 

noticing that it can be written as: 
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The last term in equation 19 shifts the bottom of the potential well downwards, but 

doesn’t change its shape, so the consequence is a polarizability of  22 / ωme  per electron. 

The trend when the value of g increases, as shown in figure 3, is a decrease in the 

polarizability. 

 

Considering the problem with more energy levels 

 

Truncating the spectrum at two levels might be an extreme simplification. Then, it is a 

fair question to ask for the consequences of having more energy levels. To examine the 

other extreme we can treat the problem for two electrons in a ladder of 16 energy levels.  

This time the equation to solve will be: 
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Like before, this equation can be numerically approached to get E as a function of g. The 

resulting function is shown in figure 4. We observe a much faster drop in the overall 

energy as g increases as compared to the case with two levels. This is not surprising, 

because the extra levels are now available for more scattering. 

 

With C as the normalizing coefficient, the wavefunction becomes: 
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Once again, we use second order perturbation theory to calculate the shift in energy as a 

response to an electric field by: 
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We also need to apply the operator to each electron and add all terms. In each case, the 

operator will break the pair, and the resulting ket will need to be multiplied by its 

corresponding bra to find its contribution. The shift in energy is given by equation 23: 
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And consequently the polarizability is given by equation 24: 
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The polarizability as a function of g for this case is shown in figure 5. We observe again a 

decrease in the polarizability as g increases, similar to the case of two states, but the 

decrease is slower in the present case. 

 

Solving the Problem for Four Electrons 

 

Let’s consider four electrons in a three energy level system. This is the simplest non-

trivial case where we can consider the pair-pair interaction expressed in the third term of 

equation 7. The equations become: 
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Like before, we use the approach of mapping the problem to an electrostatic 

configuration, the energies represent equilibrium positions of two infinite long rods in a 

region of space where the potential is given by:   
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And the rods attract each other, according to the force  
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Because of this attractive force, this time, the equilibrium positions will not be at the 

bottom of the potential wells. Figure 6 illustrates this situation for g=0.5, the attraction 

brings the two positions closer together. 

An analysis of the energies E1 and E2 as a function of g shows that the value of E1 first 

decreases, but then starts to increase, while E2 decreases monotonically (see figure 7). 

More importantly, the sum of the energies decreases monotonically. (The figure shows 

the average energy as a dotted line). 

 



We encounter a problem at g=0.78. The two energies coalesce at E=2, so the solutions to 

the equations diverge. Richardson attacked this problem by considering complex energies 

[16]. We can do this by substituting ηε iE −=1 and ηε iE +=2 . The energies must be 

complex conjugates of each other because the total energy, E1+E2, must be real. 

 

Therefore, the equations become: 
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Notice that equation 28b is the complex conjugate of 28a; therefore we only need to solve 

one. However, we still have to make sure that both real and imaginary parts equal zero. 

The new equations become: 
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Equation 29b is the same as equation 29a, but solved for g. Since equation 29c does not 

involve g, we can use it to solve for η given a value of ε and then use equation 29b to 

find g. Using this approach, the trend in figure 7 for g<0.78 can be extended to larger 

values as shown in the figure. 

 

The resulting wavefunction can be calculated as expressed in equations 30: 
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Using a cartoon representation of this wavefunction we get equation 31. 
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To find the response to an electric field, we calculate the shift in energy using 

perturbation theory. In first order, we notice that the application of the position operator 

will split pairs in the wavefunction, so we again obtain a null result. In second order 

perturbation theory, we need to consider excited states. 
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The excited states that include a split pair are simple to calculate in this case because the 

two blocked states will not be available for the remaining pair to scatter. Regardless of 

the value of g, the energy of the following excited states will be constant: 
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The ket resulting from the application of the position operator on the ground state is: 
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Therefore the resulting polarizability from perturbation theory is: 
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This is illustrated in figure 8. We observe once again that when 0→g  the system 

approaches the normal state where ωh6=E  and then the polarizability is equal to the 

normal value  22 /4 ωα me= . The trend for increasing g is once again a reduction in the 

polarizability. 

 

Four electrons and four levels 

 

By adding more energy levels to the case of 4 electrons, the result becomes more 

realistic. Therefore we will examine the case of four energy levels. To find the energies, 

we need to solve two equations: 
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Once again, mapping the problem into an electrostatic problem works as long as the 

energies are real. If g is too large we will need to resort to a solution of energies that are 

complex conjugates of each other as previously performed. The solution for the energies 

as a function of g is shown in figure 9. We observe that the overall energy decreases 

monotonically, but 1E first decreases and then increases to finally coalesce with 2E at 

68.0≈g , which is similar to the result with 3 levels. 

 

The wavefunction is calculated below: 
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With a cartoon representation as follows: 
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Introducing an Electric field 
One more time, to find the response to an electric field we calculate the shift in energy 

using second order perturbation theory (equation 33). This time the excited states 

energies will be functions of g. The split pair of electrons blocks two levels, but the 

remaining pair will have two states to scatter. The excited states that contain one split pair 

are: 
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Equations 41 

 

And the ket that results from applying the operator on the ground state is: 
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So, the matrix elements are: 

 

1224141123131 )()()( kcckccaa nm +++=++
= ψψ  

2224142123132 )()()( kcckccaa nm +++=++
= ψψ  

3234243113123 )(2)(2)( kcckccaa nm +++=++
= ψψ  

4234244113124 )(2)(2)( kcckccaa nm +++=++
= ψψ  

5224235114135 )(3)(3)( kcckccaa nm +++=++
= ψψ  

6224236114136 )(3)(3)( kcckccaa nm +++=++
= ψψ   Equations 43 

 

The polarizability as a function of g is shown in figure 10. We observe one more time a 

decrease as g increases, but the trend is slower than in the case of 3 levels. There is also a 

small sharp change around 68.0≈g  where 21 EE = , but the main result remains that the 

pairing interaction reduces the polarizability. 

 

Discussion and conclusions 

The Richardson model has allowed us to find the energies and wavefunctions of the 

pairing Hamiltonian. The solution is simple for a few electrons, but the number of terms 



in the solution is given by the Newton binomial 








Pairsof

Levelsof

#

#
, which grows very fast 

with the size of the sample.  

Once the solution is found, to calculate polarizabilities using perturbation theory, it is 

necessary to find the matrix elements of all wavefunctions with the perturbing 

Hamiltonian. Obviously, these elements will depend on the shape of the potential used 

for the electrons. In this work, we used a simple parabolic potential and found that the 

polarizability decreases as the pairing interaction becomes stronger. However, 

preliminary calculations show a similar effect in the case of an infinite square potential 

(particle in a box problem). It seems that the effect is robust and although dependent on 

the exact potential used, the results shown here are general trends. 

 

It is interesting that the polarizability decreases as the interaction gets stronger. This 

result might explain some of the observations made at Georgia Tech. Figure 2 in 

reference [10] shows a clear decrease in the polarizability (before stronger effects are 

observed at even lower temperatures), signaling an inability of the electrons to screen 

external fields. But in order to explain the ferroelectric effect we would need to consider 

additional factors since we cannot reproduce them in the present model. 
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Figure 1: The problem of 2 electrons in the presence of a pairing interaction with 

strength ω= h5.0g  mapped into a 2-dimensional electrostatic problem. The y-axis is the 

potential and the x-axis represents the energy of the pair in units of ωh . The solid arrow 

indicates the energy of the ground state and the dotted arrow indicates the energy of the 

excited state of the pair. 



 
Figure 2: Ground state energy of a pair of electrons as a function of the pairing 

parameter “g” in the case of 2 levels available for scattering (solid line). Also shown, is 

the energy of an excited pair state (dashed line) and an excited split pair (dotted line). 

 

 
Figure 3: Polarizability of 2 electrons in a parabolic potential well truncated at 2 levels 

as a function of the pairing parameter “g”. We observe a decrease in the polarizability as 

g increases. The maximum value happens when g=0. 

 

 

 
Figure 4: Ground state energy of 2 electrons in a parabolic potential well truncated at 16 

levels as a function of the pairing parameter “g” (solid line). For comparison, the ground 

state energy of 2 electrons when only 2 levels are available for scattering is shown in the 

figure as the dashed line.  



 

 
Figure 5: Polarizability of 2 electrons in a parabolic potential well truncated at 16 levels 

as a function of the pairing parameter “g” (solid line). The polarizability when only 2 

levels are available for scattering is shown as a dashed line for comparison. 

 

   
Figure 6: Electrostatic mapping of the problem of four electrons in a three level system 

in the presence of a pairing interaction of strength ω= h5.0g . The attractive pair-pair 

interaction maps into an attractive force that causes the two electron pairs to move from 

the bottom of each well as represented by the circles. 

 

 
 



Figure 7: Energies of the two electron pairs E1 (solid line) and E2 (dashed line) with 3 

levels available for scattering shown as a function of the pairing parameter g. When g=0 

they adopt the lowest levels with energies of ωh2  and ωh4 , as g increases the energies 

show an initial decrease, but as the attractive pair-pair force exceeds the repulsive force 

caused by the potential well, the two pairs coalesce on a single real energy (equal to ωh2 ) 

when 78.0g ≈ . The dotted line represents the average energy of the two pairs. 

Continuing from the coalescing point, the pairs have complex energies that are 

conjugates (only the real part is shown for g>0.78). The total energy is real, as it must be, 

and monotonically decreases with g. The magnitude of the imaginary component is 

represented by the thin line emerging from zero at g=0.78. 

 

 
 

Figure 8: Polarizability of 4 electrons in the presence of a pairing interaction with 3 

unblocked levels available for scattering. The value decreases with respect to the normal 

state as g increases. 

 

 

 

 
 

Figure 9: Extending from figure 7, the introduction of another energy level causes the 

coalescing point to happen at a lower value of g (here at 0.68) and the energy to drop 

more quickly as g increases. This is because another energy level increases the 

opportunity for pairs to scatter, reducing the energy of the system. 



 

 
 

Figure 10: Polarizability of 4 electrons in the presence of a pairing interaction with 4 

unblocked levels available for scattering (solid line). The value decreases with respect to 

the normal state as seen in the case of 3 levels (dashed line), but the decrease is slower 

here. 
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